【BZOJ1003】1003: [ZJOI2006]物流运输trans SPFA+DP

时间:2022-05-23 05:01:11

Description

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

Input

第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1 < = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

Output

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

32

HINT

前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32

Source

Solution:看了题解,原来是SPFA+DP,首先用SPFA预处理出path[i][j](第i天到第j天的最短路,因为运费为1,所以最短路的费用最短),然后DP,枚举转运点j,方程为f[i]=min(f[i],f[j]+k+path[j+1][i]*(i-j));注意SPFA时对于不能装载的港口的处理也就是ctld=can't loading(?)。。。

 #include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
#include <cmath>
#define ll long long
using namespace std;
struct data1{int next,p,v;}e[];
int flag[][],head[];
ll f[],path[][];
int n,m,k,e1,cnt,d;
void se(int x,int y,int w)
{
cnt++; e[cnt].next=head[x]; head[x]=cnt; e[cnt].p=y; e[cnt].v=w;
cnt++; e[cnt].next=head[y]; head[y]=cnt; e[cnt].p=x; e[cnt].v=w;
} int SPFA(int x,int y)
{
int dis[],ctld[],visit[];
memset(dis,0x7f,sizeof(dis));
memset(visit,,sizeof(visit));
memset(ctld,,sizeof(ctld));
for (int i=x;i<=y;i++)
for (int j=;j<=m;j++)
if (flag[j][i]) ctld[j]=;
dis[]=; visit[]=;
queue<int> q;
q.push();
while (!q.empty())
{
int now=q.front();q.pop();
for (int i=head[now];i!=-;i=e[i].next)
{
if (!ctld[e[i].p] && dis[e[i].p]>dis[now]+e[i].v)
{
dis[e[i].p]=dis[now]+e[i].v;
if (!visit[e[i].p])
{
visit[e[i].p]=;
q.push(e[i].p);
}
}
}
visit[now]=;
}
return dis[m];
} void DP()
{
for (int i=;i<=n;i++)
{
f[i]=path[][i]*i;
for (int j=;j<i;j++)
f[i]=min(f[i],f[j]+k+path[j+][i]*(i-j));
}
} int main()
{
memset(head,-,sizeof(head));
memset(e,-,sizeof(e));
scanf("%d%d%d%d",&n,&m,&k,&e1);
for (int i=;i<=e1;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
se(a,b,c);
}
scanf("%d",&d);
for (int i=;i<=d;i++)
{
int a,b,p;
scanf("%d%d%d",&p,&a,&b);
for (int j=a;j<=b;j++) flag[p][j]=;
}
for (int i=;i<=n;i++)
for (int j=i;j<=n;j++)
path[i][j]=SPFA(i,j);
DP();
printf("%lld\n",f[n]);
return ;
}