Farey Sequence
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 17744 | Accepted: 7109 |
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.
Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
Sample Input
2
3
4
5
0
Sample Output
1
3
5
9
Source
POJ Contest,Author:Mathematica@ZSU
std的玄学做法没看懂
给n,求ans[n]。其中$ans[n]=ans[n-1]+phi[n]$,且n的范围比较大,在10的6次以内。则考虑打表解决。
先得到能整除i的最小正整数$md[i]$(一定是个素数),再利用性质3,得到$phi[i]$
不过我用线性筛水过去啦。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define LL long long
using namespace std;
const LL MAXN=*1e6+;
LL prime[MAXN],tot=,vis[MAXN],phi[MAXN],N;
void GetPhi()
{
for(LL i=;i<=N;i++)
{
if(!vis[i])
{
prime[++tot]=i;
phi[i]=i-;
}
for(LL j=;j<=tot&&prime[j]*i<=N;j++)
{
vis[ i*prime[j] ] = ;
if(i%prime[j]==)
{
phi[ i*prime[j] ]=phi[i]*prime[j];
break;
}
else phi[ i*prime[j] ]=phi[i]*(prime[j]-);
}
}
for(LL i=;i<=N;i++)
phi[i]=phi[i]+phi[i-];
}
int main()
{
N=*1e6+;
GetPhi();
while(cin>>N&&N!=)
printf("%lld\n",phi[N]);
return ;
}