我们知道下式成立:
\begin{equation}\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots\label{eq1}\end{equation}
所以有:
\begin{equation}\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots\label{eq2}\end{equation}
现在我们来证明 \(\ln2=0\)。
\begin{equation*}\begin{split}\ln 2 =& 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots \\\\=&\left (1+\frac{1}{3}+\frac{1}{5}+\ldots\right )-\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right ) \\\\=&\left (1+\frac{1}{3}+\frac{1}{5}+\ldots\right )+\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right )- \\\\&2\left (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots\right ) \\\\=&\left (1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots\right )-\left (1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots\right ) \\\\=&0\end{split}\end{equation*}
得证。
现在我们来证明 \(2=1\)。
已知:
\begin{equation*}\ln 2 = 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\ldots\end{equation*}
两边乘以 \(2\),有:
\begin{equation*}\begin{split}2 \ln 2 =& 2-1+\frac{2}{3}-\frac{1}{2}+\frac{2}{5}-\frac{1}{3}+\frac{2}{7}-\frac{1}{4}+\frac{2}{9}-\frac{1}{5}+\ldots \\\\=&1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\ldots \\\\=&\ln 2 \end{split}\end{equation*}
所以有:
\begin{equation*} 2 = 1\end{equation*}
以上这两个荒谬的结论的证明,哪里出了问题?
问题在于 \(\ln(1+x)\) 展开成的级数方程\eqref{eq1}不是绝对收敛的,而是条件收敛的,条件收敛的级数是不可以任意调整级数各项的位置的。