零、序(注意本部分与标题无太大关系,可直接翻到第一部分)
既然没用为啥会有序?原因不想再开一篇文章,来抒发点什么感想或者计划了,就在这里写点好了:
前些日子买了几本书,打算学习和研究大数据方面的知识,一直因为实习、考试、毕业设计等问题搞得没有时间,现在进入了寒假,可以安心的学点有用的知识了。
这篇博客里的算法部分的内容来自《数据算法:Hadoop/Spark大数据处理技巧》一书,不过书中的代码虽然思路正确,但是代码不完整,并且只有java部分的编程,我在它的基础上又加入scala部分,当然是在使用Spark的时候写的scala。
废话不多说,进入正题。
一、输入、期望输出、思路。
输入为SecondarySort.txt,内容为:
,,,
,,,
,,,-
,,,
,,,-
,,,
,,,-
,,,
,,,
,,,
,,,
,,,
,,,-
意义为:
年,月,日,温度
期望输出:
- ,,-
- ,,,,-
- ,-
- ,,-
意义为:
年-月 温度1,温度2,温度3,……
年-月从上之下降序排列,
温度从左到右降序排列
思路:
抛弃不需要的代表日的哪一行数据
将年月作为组合键(key),比较大小,降序排列
将对应年月(key)的温度的值(value)进行降序排列和拼接
二、使用Java编写MapReduce程序实现二次排序
代码要实现的类有:
除了常见的SecondarySortingMapper,SecondarySortingReducer,和SecondarySortDriver以外
这里还多出了两个个插件类(DateTemperatureGroupingComparator和DateTemperaturePartioner)和一个自定义类型(DateTemperaturePair)
以下是实现的代码(注意以下每个文件的代码段我去掉了包名,所以要使用的话自己加上吧):
SecondarySortDriver.java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class SecondarySortDriver extends Configured implements Tool {
public int run(String[] args) throws Exception {
Configuration configuration = getConf();
Job job = Job.getInstance(configuration, "SecondarySort");
job.setJarByClass(SecondarySortDriver.class);
job.setJobName("SecondarySort"); Path inputPath = new Path(args[0]);
Path outputPath = new Path(args[1]);
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath); // 设置map输出key value格式
job.setMapOutputKeyClass(DateTemperaturePair.class);
job.setMapOutputValueClass(IntWritable.class);
// 设置reduce输出key value格式
job.setOutputKeyClass(DateTemperaturePair.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(SecondarySortingMapper.class);
job.setReducerClass(SecondarySortingReducer.class);
job.setPartitionerClass(DateTemperaturePartitioner.class);
job.setGroupingComparatorClass(DateTemperatureGroupingComparator.class); boolean status = job.waitForCompletion(true);
return status ? 0 : 1;
} public static void main(String[] args) throws Exception {
if (args.length != 2) {
throw new IllegalArgumentException(
"!!!!!!!!!!!!!! Usage!!!!!!!!!!!!!!: SecondarySortDriver"
+ "<input-path> <output-path>");
}
int returnStatus = ToolRunner.run(new SecondarySortDriver(), args);
System.exit(returnStatus);
}
}
DateTemperaturePair.java
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; public class DateTemperaturePair implements Writable,
WritableComparable<DateTemperaturePair> {
private String yearMonth;
private String day;
protected Integer temperature; public int compareTo(DateTemperaturePair o) {
int compareValue = this.yearMonth.compareTo(o.getYearMonth());
if (compareValue == 0) {
compareValue = temperature.compareTo(o.getTemperature());
}
return -1 * compareValue;
} public void write(DataOutput dataOutput) throws IOException {
Text.writeString(dataOutput, yearMonth);
dataOutput.writeInt(temperature); } public void readFields(DataInput dataInput) throws IOException {
this.yearMonth = Text.readString(dataInput);
this.temperature = dataInput.readInt(); } @Override
public String toString() {
return yearMonth.toString();
} public String getYearMonth() {
return yearMonth;
} public void setYearMonth(String text) {
this.yearMonth = text;
} public String getDay() {
return day;
} public void setDay(String day) {
this.day = day;
} public Integer getTemperature() {
return temperature;
} public void setTemperature(Integer temperature) {
this.temperature = temperature;
}
}
SecondarySortingMapper.java
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class SecondarySortingMapper extends
Mapper<LongWritable, Text, DateTemperaturePair, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] tokens = value.toString().split(",");
// YYYY = tokens[0]
// MM = tokens[1]
// DD = tokens[2]
// temperature = tokens[3]
String yearMonth = tokens[0] + "-" + tokens[1];
String day = tokens[2];
int temperature = Integer.parseInt(tokens[3]); DateTemperaturePair reduceKey = new DateTemperaturePair();
reduceKey.setYearMonth(yearMonth);
reduceKey.setDay(day);
reduceKey.setTemperature(temperature);
context.write(reduceKey, new IntWritable(temperature));
}
}
DateTemperaturePartioner.java
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner; public class DateTemperaturePartitioner extends
Partitioner<DateTemperaturePair, Text> {
@Override
public int getPartition(DateTemperaturePair dataTemperaturePair, Text text,
int i) {
return Math.abs(dataTemperaturePair.getYearMonth().hashCode() % i);
}
}
DateTemperatureGroupingComparator.java
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator; public class DateTemperatureGroupingComparator extends WritableComparator { public DateTemperatureGroupingComparator() {
super(DateTemperaturePair.class, true);
} @Override
public int compare(WritableComparable a, WritableComparable b) {
DateTemperaturePair pair1 = (DateTemperaturePair) a;
DateTemperaturePair pair2 = (DateTemperaturePair) b;
return pair1.getYearMonth().compareTo(pair2.getYearMonth());
}
}
SecondarySortingReducer.java
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class SecondarySortingReducer extends
Reducer<DateTemperaturePair, IntWritable, DateTemperaturePair, Text> { @Override
protected void reduce(DateTemperaturePair key,
Iterable<IntWritable> values, Context context) throws IOException,
InterruptedException {
StringBuilder sortedTemperatureList = new StringBuilder();
for (IntWritable temperature : values) {
sortedTemperatureList.append(temperature);
sortedTemperatureList.append(",");
}
sortedTemperatureList.deleteCharAt(sortedTemperatureList.length()-1);
context.write(key, new Text(sortedTemperatureList.toString()));
} }
三、使用scala编写Spark程序实现二次排序
这个代码想必就比较简洁了。如下:
SecondarySort.scala
package spark
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.rdd.RDD.rddToOrderedRDDFunctions
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions object SecondarySort {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName(" Secondary Sort ")
.setMaster("local")
var sc = new SparkContext(conf)
sc.setLogLevel("Warn")
//val file = sc.textFile("hdfs://localhost:9000/Spark/SecondarySort/Input/SecondarySort2.txt")
val file = sc.textFile("e:\\SecondarySort.txt")
val rdd = file.map(line => line.split(","))
.map(x=>((x(0),x(1)),x(3))).groupByKey().sortByKey(false)
.map(x => (x._1._1+"-"+x._1._2,x._2.toList.sortWith(_>_)))
rdd.foreach(
x=>{
val buf = new StringBuilder()
for(a <- x._2){
buf.append(a)
buf.append(",")
}
buf.deleteCharAt(buf.length()-1)
println(x._1+" "+buf.toString())
})
sc.stop()
}
}