NICE 的DP 题,明白了题解真是不错。
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1228 Solved: 622
[Submit][Status]
Description
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
Input
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。
Output
只有一行为k个子矩阵分值之和最大为多少。
Sample Input
3 2 2
1 -3
2 3
-2 3
1 -3
2 3
-2 3
Sample Output
9
HINT
思路:M<=2;
先是M==1的情况 这个是满满的三维。DP[I][J】表示做的第几个,现在做到J个数了。转移也比较简单。
M==2时,
我们要加一维。
具体是这样:F[I][J][K] 表示做第I个 J 表示上面做到第几,K表示下面做到第几。
转移方程:具体见代码。
#include<bits/stdc++.h>
using namespace std;
#define N 123
int s[N];
int s1[N];
int s2[N];
int a[N];
int dp[N][N];
int f[N][N][N];
int main()
{
int n;
int k;
int m;
scanf("%d%d%d",&n,&m,&k);
if (m==){
for (int i=;i<=n;i++) {
scanf("%d",&a[i]);
s[i]=s[i-]+a[i];
}
for (int i=;i<=k;i++)
for (int j=;j<=n;j++)
{
dp[i][j]=dp[i][j-];
for (int p=;p<j;p++)
dp[i][j]=max(dp[i][j],dp[i-][p]+s[j]-s[p]);
}
printf("%d\n",dp[k][n]);
}
else
{
for (int i=;i<=n;i++)
{
int x1,x2;
scanf("%d%d",&x1,&x2);
s1[i]+=s1[i-]+x1;
s2[i]+=s2[i-]+x2;
} for (int i=;i<=k;i++)
for (int j=;j<=n;j++)
for (int p=;p<=n;p++)
{
f[i][j][p]=max(f[i][j-][p],f[i][j][p-]);
for (int l=;l<j;l++)
f[i][j][p]=max(f[i][j][p],f[i-][l][p]+s1[j]-s1[l]); for (int l=;l<p;l++)
f[i][j][p]=max(f[i][j][p],f[i-][j][l]+s2[p]-s2[l]); if (j==p)
{
for (int l=;l<j;l++)
f[i][j][p]=max(f[i][j][p],f[i-][l][l]+s2[p]-s2[l]+s1[p]-s1[l]);
}
} printf("%d\n",f[k][n][n]);
}
return ;
}