Description
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
Input
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。
Output
只有一行为k个子矩阵分值之和最大为多少。
Sample Input
3 2 2
1 -3
2 3
-2 3
1 -3
2 3
-2 3
Sample Output
9
直接拎dp
#include<cstdio>
#include<algorithm>
using namespace std; int n,m,o,p,k;
int a[][];
int dp[][][];
bool f;
inline int read(){
p=;o=getchar();f=;
while(o<''||o>''){if (o=='-') f=;o=getchar();}
while(o>=''&&o<='') p=p*+o-,o=getchar();
if (f)return p;else return -p;
}
inline int max(int a,int b){return a>b?a:b;}
int main(){
register int i,j;
n=read();m=read();k=read();
for (i=;i<=n;i++)
for (j=;j<m;j++) a[i][j]=read();
if (m==){
for (j=;j<=k;j++)
dp[][j][]=dp[][j][]=-1e9;
dp[][][]=;
for (i=;i<=n;i++)
for (j=;j<=k;j++) dp[i][j][]=max(dp[i-][j][],dp[i-][j-][])+a[i][],dp[i][j][]=max(dp[i][j][],dp[i-][j][]);
printf("%d\n",dp[n][k][]);
}else{
for (j=;j<=k;j++)
dp[][j][]=dp[][j][]=dp[][j][]=dp[][j][]=dp[][j][]=-1e9;
dp[][][]=;
for (i=;i<=n;i++)
for (j=;j<=k;j++)
dp[i][j][]=max(dp[i-][j][],max(dp[i-][j][],max(dp[i-][j][],max(dp[i-][j][],dp[i-][j][])))),
dp[i][j][]=max(dp[i][j-][],max(dp[i-][j][],dp[i-][j][]))+a[i][],
dp[i][j][]=max(dp[i][j-][],max(dp[i-][j][],dp[i-][j][]))+a[i][],
dp[i][j][]=max(dp[i][j-][],dp[i-][j][])+a[i][]+a[i][],
dp[i][j][]=j>=?max(dp[i][j-][],max(dp[i-][j][],max(dp[i-][j-][],max(dp[i-][j-][],dp[i-][j-][]))))+a[i][]+a[i][]:-1e9;
printf("%d\n",max(dp[n][k][],max(dp[n][k][],max(dp[n][k][],max(dp[n][k][],dp[n][k][])))));
}
}