Apriori算法第二篇----详细分析和代码实现

时间:2022-03-29 15:26:13

1 Apriori介绍

Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集。最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则。

其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的。因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项集(A∩I)不可能比I出现次数更多。因此A∩I也不是频繁的。

2   连接步和剪枝步

在上述的关联规则挖掘过程的两个步骤中,第一步往往是总体性能的瓶颈。Apriori算法采用连接步和剪枝步两种方式来找出所有的频繁项集。

1)  连接步

为找出Lk(所有的频繁k项集的集合),通过将Lk-1(所有的频繁k-1项集的集合)与自身连接产生候选k项集的集合。候选集合记作Ck。设l1和l2是Lk-1中的成员。记li[j]表示li中的第j项。假设Apriori算法对事务或项集中的项按字典次序排序,即对于(k-1)项集li,li[1]<li[2]<……….<li[k-1]。将Lk-1与自身连接,如果(l1[1]=l2[1])&&(
l1[2]=l2[2])&&……..&& (l1[k-2]=l2[k-2])&&(l1[k-1]<l2[k-1]),那认为l1和l2是可连接。连接l1和l2 产生的结果是{l1[1],l1[2],……,l1[k-1],l2[k-1]}。

2)  剪枝步

CK是LK的超集,也就是说,CK的成员可能是也可能不是频繁的。通过扫描所有的事务(交易),确定CK中每个候选的计数,判断是否小于最小支持度计数,如果不是,则认为该候选是频繁的。为了压缩Ck,可以利用Apriori性质:任一频繁项集的所有非空子集也必须是频繁的,反之,如果某个候选的非空子集不是频繁的,那么该候选肯定不是频繁的,从而可以将其从CK中删除。

(Tip:为什么要压缩CK呢?因为实际情况下事务记录往往是保存在外存储上,比如数据库或者其他格式的文件上,在每次计算候选计数时都需要将候选与所有事务进行比对,众所周知,访问外存的效率往往都比较低,因此Apriori加入了所谓的剪枝步,事先对候选集进行过滤,以减少访问外存的次数。)

3   Apriori算法实例

交易ID

商品ID列表

T100

I1,I2,I5

T200

I2,I4

T300

I2,I3

T400

I1,I2,I4

T500

I1,I3

T600

I2,I3

T700

I1,I3

T800

I1,I2,I3,I5

T900

I1,I2,I3

上图为某商场的交易记录,共有9个事务,利用Apriori算法寻找所有的频繁项集的过程如下:

Apriori算法第二篇----详细分析和代码实现

详细介绍下候选3项集的集合C3的产生过程:从连接步,首先C3={{I1,I2,I3},{I1,I2,I5},{I1,I3,I5},{I2,I3,I4},{I2,I3,I5},{I2,I4,I5}}(C3是由L2与自身连接产生)。根据Apriori性质,频繁项集的所有子集也必须频繁的,可以确定有4个候选集{I1,I3,I5},{I2,I3,I4},{I2,I3,I5},{I2,I4,I5}}不可能时频繁的,因为它们存在子集不属于频繁集,因此将它们从C3中删除。注意,由于Apriori算法使用逐层搜索技术,给定候选k项集后,只需检查它们的(k-1)个子集是否频繁。

3. Apriori伪代码

算法:Apriori

输入:D - 事务数据库;min_sup
- 最小支持度计数阈值

输出:L - D中的频繁项集

方法:

     L1=find_frequent_1-itemsets(D);
// 找出所有频繁1项集

For(k=2;Lk-1!=null;k++){

Ck=apriori_gen(Lk-1); // 产生候选,并剪枝

For each 事务t
in D{ // 扫描D进行候选计数

Ct =subset(Ck,t);
// 得到t的子集

For each 候选c 属于 Ct

                         c.count++;

}

Lk={c属于Ck |
c.count>=min_sup}

}

Return L=所有的频繁集;

Procedure apriori_gen(Lk-1:frequent(k-1)-itemsets)

For each项集l1属于Lk-1

              For
each项集 l2属于Lk-1

                       If((l1[1]=l2[1])&&(
l1[2]=l2[2])&&……..

&& (l1[k-2]=l2[k-2])&&(l1[k-1]<l2[k-1]))
then{

c=l1连接l2 //连接步:产生候选

if
has_infrequent_subset(c,Lk-1) then

delete
c; //剪枝步:删除非频繁候选

else
add c to Ck;

}

Return Ck;

 

     Procedure
has_infrequent_sub
(c:candidate k-itemset; Lk-1:frequent(k-1)-itemsets)

        For
each(k-1)-subset s of c

If s不属于Lk-1 then

Return true;

Return false;

 

4. 由频繁项集产生关联规则

Confidence(A->B)=P(B|A)=support_count(AB)/support_count(A)

关联规则产生步骤如下:

1)  对于每个频繁项集l,产生其所有非空真子集;

2)  对于每个非空真子集s,如果support_count(l)/support_count(s)>=min_conf,则输出 s->(l-s),其中,min_conf是最小置信度阈值。

例如,在上述例子中,针对频繁集{I1,I2,I5}。可以产生哪些关联规则?该频繁集的非空真子集有{I1,I2},{I1,I5},{I2,I5},{I1
},{I2}和{I5},对应置信度如下:

I1&&I2->I5            confidence=2/4=50%

I1&&I5->I2            confidence=2/2=100%

I2&&I5->I1            confidence=2/2=100%

I1 ->I2&&I5            confidence=2/6=33%

I2 ->I1&&I5            confidence=2/7=29%

I5 ->I1&&I2            confidence=2/2=100%

如果min_conf=70%,则强规则有I1&&I5->I2,I2&&I5->I1,I5
->I1&&I2。

5. Apriori Java代码

package com.apriori;

import java.util.ArrayList;

import java.util.Collections;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Set;

public class Apriori {

private final static
int SUPPORT = 2; // 支持度阈值

private final static
double CONFIDENCE = 0.7; // 置信度阈值

private final static
String ITEM_SPLIT=";"; // 项之间的分隔符

private final static
String CON="->"; // 项之间的分隔符

private final static
List<String> transList=new ArrayList<String>(); //所有交易

static{//初始化交易记录

transList.add("1;2;5;");

transList.add("2;4;");

transList.add("2;3;");

transList.add("1;2;4;");

transList.add("1;3;");

transList.add("2;3;");

transList.add("1;3;");

transList.add("1;2;3;5;");

transList.add("1;2;3;");

}

public Map<String,Integer>
getFC(){

Map<String,Integer> frequentCollectionMap=new
HashMap<String,Integer>();//所有的频繁集

frequentCollectionMap.putAll(getItem1FC());

Map<String,Integer> itemkFcMap=new
HashMap<String,Integer>();

itemkFcMap.putAll(getItem1FC());

while(itemkFcMap!=null&&itemkFcMap.size()!=0){

Map<String,Integer>
candidateCollection=getCandidateCollection(itemkFcMap);

Set<String>
ccKeySet=candidateCollection.keySet();

//对候选集项进行累加计数

for(String trans:transList){

for(String
candidate:ccKeySet){

boolean
flag=true;// 用来判断交易中是否出现该候选项,如果出现,计数加1

String[]
candidateItems=candidate.split(ITEM_SPLIT);

for(String
candidateItem:candidateItems){

if(trans.indexOf(candidateItem+ITEM_SPLIT)==-1){

flag=false;

break;

}

}

if(flag){

Integer
count=candidateCollection.get(candidate);

candidateCollection.put(candidate,
count+1);

}

}

}

//从候选集中找到符合支持度的频繁集项

itemkFcMap.clear();

for(String candidate:ccKeySet){

Integer
count=candidateCollection.get(candidate);

if(count>=SUPPORT){

itemkFcMap.put(candidate,
count);

}

}

//合并所有频繁集

frequentCollectionMap.putAll(itemkFcMap);

}

return frequentCollectionMap;

}

private Map<String,Integer>
getCandidateCollection(Map<String,Integer> itemkFcMap){

Map<String,Integer>
candidateCollection=new HashMap<String,Integer>();

Set<String>
itemkSet1=itemkFcMap.keySet();

Set<String>
itemkSet2=itemkFcMap.keySet();

for(String
itemk1:itemkSet1){

for(String
itemk2:itemkSet2){

//进行连接

String[]
tmp1=itemk1.split(ITEM_SPLIT);

String[]
tmp2=itemk2.split(ITEM_SPLIT);

String
c="";

if(tmp1.length==1){

if(tmp1[0].compareTo(tmp2[0])<0){

c=tmp1[0]+ITEM_SPLIT+tmp2[0]+ITEM_SPLIT;

}

}else{

boolean
flag=true;

for(int
i=0;i<tmp1.length-1;i++){

if(!tmp1[i].equals(tmp2[i])){

flag=false;

break;

}

}

if(flag&&(tmp1[tmp1.length-1].compareTo(tmp2[tmp2.length-1])<0)){

c=itemk1+tmp2[tmp2.length-1]+ITEM_SPLIT;

}

}

//进行剪枝

boolean
hasInfrequentSubSet = false;

if
(!c.equals("")) {

String[]
tmpC = c.split(ITEM_SPLIT);

for
(int i = 0; i < tmpC.length; i++) {

String
subC = "";

for
(int j = 0; j < tmpC.length; j++) {

if
(i != j) {

subC
= subC+tmpC[j]+ITEM_SPLIT;

}

}

if
(itemkFcMap.get(subC) == null) {

hasInfrequentSubSet
= true;

break;

}

}

}else{

hasInfrequentSubSet=true;

}

if(!hasInfrequentSubSet){

candidateCollection.put(c,
0);

}

}

}

return
candidateCollection;

}

private Map<String,Integer>
getItem1FC(){

Map<String,Integer>
sItem1FcMap=new HashMap<String,Integer>();

Map<String,Integer>
rItem1FcMap=new HashMap<String,Integer>();//频繁1项集

for(String
trans:transList){

String[]
items=trans.split(ITEM_SPLIT);

for(String
item:items){

Integer
count=sItem1FcMap.get(item+ITEM_SPLIT);

if(count==null){

sItem1FcMap.put(item+ITEM_SPLIT,
1);

}else{

sItem1FcMap.put(item+ITEM_SPLIT,
count+1);

}

}

}

Set<String>
keySet=sItem1FcMap.keySet();

for(String
key:keySet){

Integer
count=sItem1FcMap.get(key);

if(count>=SUPPORT){

rItem1FcMap.put(key,
count);

}

}

return
rItem1FcMap;

}

public Map<String,Double>
getRelationRules(Map<String,Integer> frequentCollectionMap){

Map<String,Double>
relationRules=new HashMap<String,Double>();

Set<String>
keySet=frequentCollectionMap.keySet();

for
(String key : keySet) {

double
countAll=frequentCollectionMap.get(key);

String[]
keyItems = key.split(ITEM_SPLIT);

if(keyItems.length>1){

List<String>
source=new ArrayList<String>();

Collections.addAll(source,
keyItems);

List<List<String>>
result=new ArrayList<List<String>>();

buildSubSet(source,result);//获得source的所有非空子集

for(List<String>
itemList:result){

if(itemList.size()<source.size()){//只处理真子集

List<String>
otherList=new ArrayList<String>();

for(String
sourceItem:source){

if(!itemList.contains(sourceItem)){

otherList.add(sourceItem);

}

}

String
reasonStr="";//前置

String
resultStr="";//结果

for(String
item:itemList){

reasonStr=reasonStr+item+ITEM_SPLIT;

}

for(String
item:otherList){

resultStr=resultStr+item+ITEM_SPLIT;

}

double
countReason=frequentCollectionMap.get(reasonStr);

double
itemConfidence=countAll/countReason;//计算置信度

if(itemConfidence>=CONFIDENCE){

String
rule=reasonStr+CON+resultStr;

relationRules.put(rule,
itemConfidence);

}

}

}

}

}

return
relationRules;

}

private  void
buildSubSet(List<String> sourceSet, List<List<String>> result) {

// 仅有一个元素时,递归终止。此时非空子集仅为其自身,所以直接添加到result中

if
(sourceSet.size() == 1) {

List<String>
set = new ArrayList<String>();

set.add(sourceSet.get(0));

result.add(set);

}
else if (sourceSet.size() > 1) {

// 当有n个元素时,递归求出前n-1个子集,在于result中

buildSubSet(sourceSet.subList(0,
sourceSet.size() - 1), result);

int
size = result.size();// 求出此时result的长度,用于后面的追加第n个元素时计数

// 把第n个元素加入到集合中

List<String>
single = new ArrayList<String>();

single.add(sourceSet.get(sourceSet.size()
- 1));

result.add(single);

// 在保留前面的n-1子集的情况下,把第n个元素分别加到前n个子集中,并把新的集加入到result中;

// 为保留原有n-1的子集,所以需要先对其进行复制

List<String>
clone;

for
(int i = 0; i < size; i++) {

clone
= new ArrayList<String>();

for
(String str : result.get(i)) {

clone.add(str);

}

clone.add(sourceSet.get(sourceSet.size()
- 1));

result.add(clone);

}

}

}

public static void
main(String[] args){

Apriori
apriori=new Apriori();

Map<String,Integer>
frequentCollectionMap=apriori.getFC();

System.out.println("----------------频繁集"+"----------------");

Set<String>
fcKeySet=frequentCollectionMap.keySet();

for(String
fcKey:fcKeySet){

System.out.println(fcKey+"  :  "+frequentCollectionMap.get(fcKey));

}

Map<String,Double> relationRulesMap=apriori.getRelationRules(frequentCollectionMap);

System.out.println("----------------关联规则"+"----------------");

Set<String> rrKeySet=relationRulesMap.keySet();

for(String rrKey:rrKeySet){

System.out.println(rrKey+"  :  "+relationRulesMap.get(rrKey));

}

}

}

转载自:http://blog.csdn.net/zjd950131/article/details/8071414

更多2