////////////////////////////////////////////////////////
//图的邻接矩阵的DFS和BFS
////////////////////////////////////////////////////////
#include <iostream>
#include <stdlib.h>
#include <queue>
#define MaxVertexNum 100 //最大顶点数
//#define INFINITY 0 //无穷大设为无符号整数的最大值
typedef char VertexType; //顶点类型设为字符类型
typedef int EdgeType; ///边的权值设为整形
enum GraphType{DG, UG, DN, UN}; //有向图,无向图,有向网图,无向网图
using namespace std; typedef struct
{
VertexType Vertices[MaxVertexNum]; //顶点表
EdgeType Edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,即边表
int n, e; //顶点数n和边数e
enum GraphType GType;
}MGraph; void CreateMGraph(MGraph *G)
{
int i, j, k, w;
G->GType = UN; /* Undirected Network 无向网图 */
cout << "请输入顶点数和边数(输入格式为:顶点数, 边数):" << endl;
cin >> G->n >> G->e; /* 输入顶点数和边数 */
cout << "请输入顶点信息(输入格式为:顶点号<CR>):" << endl;
for (i = ; i < G->n; i++)
cin >> &(G->Vertices[i]); /* 输入顶点信息,建立顶点表 */
for (i = ; i < G->n; i++)
for (j = ; j < G->n; j++)
G->Edges[i][j] = ; /* 初始化邻接矩阵 */
cout << "请输入每条边对应的两个顶点的序号和权值,输入格式为:i, j, w:" << endl;
for (k = ; k < G->e; k++) {
cin >> i >> j >> w; /* 输入e条边上的权,建立邻接矩阵 */
G->Edges[i][j] = w;
G->Edges[j][i] = w; /* 因为无向网图的邻接矩阵是对称的 */
}
} void Print(MGraph *G)
{
cout << " ";
for (int i = ; i < G->n; i++)
cout << G->Vertices[i] << " ";
cout << endl;
for (int i = ; i < G->n; i++)
{
cout << G->Vertices[i] << " ";
for (int j = ; j < G->n; j++)
{
cout << G->Edges[i][j] << " ";
}
cout << endl;
}
} //邻接矩阵存储的图 - DFS
bool Visited[] = { false };
void DFS(MGraph *G, int k)
{
cout << G->Vertices[k] << " ";
Visited[k] = true;
for (int i = ; i < G->n; i++)
{
if (G->Edges[k][i] == && Visited[i] == false)
{
DFS(G, i);
}
}
} //邻接矩阵存储的图 - BFS
void BFS(MGraph *G, int k)
{
bool Visited[] = { false };
queue<int> q;
for (int i = ; i < G->n; i++)
Visited[i] = false; if (Visited[k] == false) //如果节点未访问
{
Visited[k] = true;
cout << " visit vertex: " << G->Vertices[k] << endl;
q.push(k); //u入队列
}
while (!q.empty())
{
int t = q.front();
q.pop();
for (int w = ; w < G->n; w++)
{
if (G->Edges[t][w] != && Visited[w] == false)
{
Visited[w] = true;
cout << " visited vertex: " << G->Vertices[w] << endl;
q.push(w);
}
}
}
}
int main()
{
MGraph *G = new MGraph;
CreateMGraph(G);
Print(G);
cout << endl;
DFS(G, );
//BFS(G, 0);
system("pause");
return ;
}
测试截图: