HDOJ 4858 项目管理 ( 只是有点 莫队的分块思想在里面而已啦 )

时间:2022-06-06 08:01:02

题目: 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4858

题意:

          我们建造了一个大项目!这个项目有n个节点,用很多边连接起来,并且这个项目是连通的!
两个节点间可能有多条边,不过一条边的两端必然是不同的节点。
每个节点都有一个能量值。 现在我们要编写一个项目管理软件,这个软件呢有两个操作:
1.给某个项目的能量值加上一个特定值。
2.询问跟一个项目相邻的项目的能量值之和。(如果有多条边就算多次,比如a和b有2条边,那么询问a的时候b的权值算2次)。 思路: 分成 重点 和 轻点 重点就是度数大于一个你自己设定的值的点( 我设为 sqrt(m)) ,其他点为起点,度数就是和你存在边的点,因为题目允许两个点有两条边,所以一个点对和它相连的点 的度数 的贡献 可能大于1
然后自己建图的时候,重点只和重点连边,轻点和所有点连 ( 因为和重点相连的点就是比较多的,你每次对重点 的能量值的修改都去枚举和它相连的点的话咧,就时间复杂度很高嘛,所以就索性不全部枚举了,只枚举和它相连的点的集合中同样是重点的点 ,记录贡献 ,然后那些没被枚举到的点都是轻点 )
(这样子就是 修改某个点的能量值 受影响的重点都会被枚举到,且修改权值,但是 对于轻点来说 是不一定被枚举到的,所以询问轻点就不能直接输出 sum [ x] ,只有重点可以)
然后咧,对于重点的询问,直接输出 sum [ x ], 对于轻点的询问就暴力 枚举 和它相连的点的集合 的 能量值 加起来就是答案了 其实就是分摊复杂度嘛,重点暴力枚举的话就复杂度很高,所以就采用分块的思想。
#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define dep(i,j,k) for(int i=k;i>=j;i--)
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
#define make(i,j) make_pair(i,j)
#define pb push_back
using namespace std;
const int N=1e5+;
vector<LL>G[N];
struct note {
LL st,en;
}a[N];
LL du[N];
LL ans[N],sum[N];
bool vis[N];
int main() {
LL t; LL n,m;
scanf("%lld",&t);
while(t--) {
scanf("%lld %lld",&n,&m);
rep(i,,n) { du[i]=ans[i]=sum[i]=;G[i].clear();vis[i]=false; }
LL block=sqrt(m);
rep(i,,m) {
scanf("%lld %lld",&a[i].st,&a[i].en);
if(++du[a[i].st]>block ) vis[a[i].st]=true;
if(++du[a[i].en]>block) vis[a[i].en]=true;
}
rep(i,,m) {
LL x=a[i].st,y=a[i].en;
if(vis[x]) {
if(vis[y]) {
G[x].pb(y);
G[y].pb(x);
}
else G[y].pb(x);
}
else {
if(vis[y]) G[x].pb(y);
else {
G[x].pb(y);
G[y].pb(x);
}
}
}
LL q;
scanf("%lld",&q); LL op;
LL x; LL y;
while(q--) {
scanf("%lld",&op);
if(op==) {
scanf("%lld %lld",&x,&y);
sum[x]+=y;
rep(i,,(LL)G[x].size()-) {
//puts("1");
LL v=G[x][i]; ans[v]+=y;
}
//puts("1");
}
else {
scanf("%lld",&x);
if(vis[x]) printf("%lld\n",ans[x]);
else {
LL tmp=;
rep(i,,(LL)G[x].size()-) {
int v=G[x][i]; tmp+=sum[v];
}
printf("%lld\n",tmp);
}
}
}
}
return ;
}