Description
\(n\) 个正整数排成一列,每个位置 \(i\) 有一个初始值 \(A_i\) 以及目标值 \(B_i\)。
一次操作可以选定一个区间 \([l, r]\),并将区间内所有数赋值为 \(\max_{i\in[l, r]} A_i\)。
你可以进行任意次操作,每次操作基于上次操作的结果。
求结果若干次操作后,使得与操作后的值与目标值相同的位置数最大化。
Hint
\(1\le n\le 10^5, 1\le A_i, B_i\le 10^9\)。
原题数据过于奇妙于是就直接取最大值反正能做。官方那个三合一做法真的 /no
Solution
首先,我们不难求出对于每个 \(i\in[1, n]\),该位置可以向左侧取到目标值 \(B_i = A_j\) 的第一个位置 \(L_i = j(\le i)\) 或者不存在,同理对于右侧 \(R_i\) 我们也这么干。
为什么我们只取第一个位置呢?显然可能存在多个可取的位置,不过注意到我们对位置 \(i\) 向 \(j\) 进行一次取值操作之后,会对中间的这些值造成影响。我们希望成功的取值操作尽可能多,那么影响的范围自然是越少越好了。
观察到一个性质,对于一个 \(i\),如果 \(L_i\) (\(R_i\) 同理不再赘述)存在,说明 \(j\in[L_i +1, i]\) 这个区间的所有 \(A_j\) 的值都小于 \(A_{L_i}\)。那么一次操作下去,所有这个区间内的值都会失效,如果有像“从 \(A_j\) 取值到 \(k(<i)\)”这样的操作那必然不能同时与当前这个同时执行。
于是我们尝试大力将题目转化:有两排点,每排 \(n\) 个,对于第一排每个点 \(i\) 向第二排的第 \(L_i, R_i\) 个点分别连一条边。若选取一个第一排的点 \(i\),那么需要至少选中连接 \(i\) 的两条或一条边的一条边(没有边则不能选)。要求选中的边两两不相交(除端点外),求最多选取第三个第一排的点。
发现当 \(A_i\) 互不相同时,每个点最多连出去 \(1\) 条边,这就是个经典的 LIS 问题,不过稍加拓展就可以得到本题的正解。
还是令 \(f(i, j)\) 为处理到第一排前 \(i\) 个点,第二排涉及到的点编号最大的为 \(j\),可以选出第一排点个数的最大值。那么转移比较简单:
\]
不难发现把 \(i\) 滚掉之后实质上就是一个前缀 \(\max\),于是使用树状数组优化为 \(O(n\log n)\)。
Code
/*
* Author : _Wallace_
* Source : https://www.cnblogs.com/-Wallace-/
* Problem : eJOI2020 Exam
*/
#include <algorithm>
#include <cstdio>
#include <set>
#include <vector>
using namespace std;
const int N = 1e5 + 5;
int n;
int A[N], B[N];
int L[N], R[N];
int tr[N]; // 树状数组求前缀 max
inline void upd(int p, int v) {
for (; p <= n; p += p & -p) tr[p] = max(tr[p], v);
}
inline int get(int p) {
int v = 0;
for (; p; p -= p & -p) v = max(tr[p], v);
return v;
}
signed main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", A + i);
for (int i = 1; i <= n; i++) scanf("%d", B + i);
vector<pair<int, int> > tmp(n * 2);
set<int> rec({0, n + 1});
for (int i = 1; i <= n; i++) tmp[i - 1] = {A[i], i};
for (int i = 1; i <= n; i++) tmp[i + n - 1] = {B[i], -i};
sort(tmp.begin(), tmp.end(), greater<pair<int, int> >());
for (auto it : tmp) {
if (it.second < 0) {
int l = *rec.lower_bound(-it.second);
if (A[l] == it.first) R[-it.second] = l;
int r = *--rec.upper_bound(-it.second);
if (A[r] == it.first) L[-it.second] = r;
} else rec.insert(it.second);
} // 求 L & R
for (int i = 1; i <= n; i++) { // 同步更新
int l = get(L[i]), r = get(R[i]);
if (L[i]) upd(L[i], l + 1);
if (R[i]) upd(R[i], r + 1);
}
printf("%d\n", get(n));
return 0;
}