PDF (English) | Statistics | Forum |
Time Limit: 3 second(s) | Memory Limit: 64 MB |
An increasing subsequence from a sequence A1, A2 ... An is defined by Ai1, Ai2 ... Aik, where the following properties hold
1. i1 < i2 < i3 < ... < ik and
2. Ai1 < Ai2 < Ai3 < ... < Aik
Now you are given a sequence, you have to find the number of all possible increasing subsequences.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case contains an integer n (1 ≤ n ≤ 105) denoting the number of elements in the initial sequence. The next line will contain n integers separated by spaces, denoting the elements of the sequence. Each of these integers will be fit into a 32 bit signed integer.
Output
For each case of input, print the case number and the number of possible increasing subsequences modulo 1000000007.
Sample Input |
Output for Sample Input |
3 3 1 1 2 5 1 2 1000 1000 1001 3 1 10 11 |
Case 1: 5 Case 2: 23 Case 3: 7 |
Notes
1. For the first case, the increasing subsequences are (1), (1, 2), (1), (1, 2), 2.
2. Dataset is huge, use faster I/O methods.
题意:给你n个数,问你严格单调递增的子序列有多少个。
很水的题目吧。dp[i]——以a[i]结尾的递增子序列个数。
dp[i] = sigma(dp[j]) (1 <= j < i && a[j] < a[i]),用一个树状数组优化下就好了。
时间复杂度O(nlogn)。
方法一:sort排好序,注意相等元素的处理。映射好位置,直接就可以转移了。
AC代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (100000)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
int dp[MAXN];
struct Node{
int val, id;
};
Node num[MAXN];
bool cmp(Node a, Node b)
{
if(a.val != b.val)
return a.val < b.val;
else
return a.id > b.id;
}
int lowbit(int x){
return x & (-x);
}
void update(int x, int d, int n)
{
while(x <= n)
{
dp[x] += d;
dp[x] %= MOD;
x += lowbit(x);
}
}
int sum(int x)
{
int s = 0;
while(x > 0)
{
s += dp[x];
s %= MOD;
x -= lowbit(x);
}
return s;
}
int main()
{
int t, kcase = 1;
Ri(t);
W(t)
{
int n, a; Ri(n);
for(int i = 1; i <= n; i++)
Ri(a), num[i].val = a, num[i].id = i;
CLR(dp, 0); sort(num+1, num+n+1, cmp);
for(int i = 1; i <= n; i++)
update(num[i].id, sum(num[i].id-1)+1, n);
printf("Case %d: %d\n", kcase++, sum(n));
}
return 0;
}
方法二:将元素离散化后,二分查找区间,树状数组转移。
AC代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (100000)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
int dp[MAXN];
int a[MAXN], rec[MAXN];
int lowbit(int x){
return x & (-x);
}
void update(int x, int d, int n)
{
while(x <= n)
{
dp[x] += d;
dp[x] %= MOD;
x += lowbit(x);
}
}
int sum(int x)
{
int s = 0;
while(x > 0)
{
s += dp[x];
s %= MOD;
x -= lowbit(x);
}
return s;
}
int Findright(int val, int l, int r)
{
int ans;
while(r >= l)
{
int mid = (l + r) >> 1;
if(rec[mid] <= val)
{
l = mid+1;
ans = mid;
}
else
r = mid-1;
}
return ans;
}
int Findpos(int val, int l, int r)
{
while(r >= l)
{
int mid = (l + r) >> 1;
if(rec[mid] == val)
return mid;
else if(rec[mid] > val)
r = mid-1;
else
l = mid+1;
}
}
int main()
{
int t, kcase = 1;
Ri(t);
W(t)
{
int n; Ri(n); int len = 1;
for(int i = 1; i <= n; i++)
Ri(a[i]), rec[len++] = a[i];
sort(rec+1, rec+len);
int R = 2;
for(int i = 2; i < len; i++)
if(rec[i] != rec[i-1])
rec[R++] = rec[i];
CLR(dp, 0); sort(rec+1, rec+R);
for(int i = 1; i <= n; i++)
{
int r = Findright(a[i]-1, 1, R-1);
int p = Findpos(a[i], 1, R-1);
update(p, sum(r)+1, n);
}
printf("Case %d: %d\n", kcase++, sum(n));
}
return 0;
}