【BZOJ4176】Lucas的数论
Description
去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。
在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数。他现在长大了,题目也变难了。
求如下表达式的值:
其中 表示ij的约数个数。
他发现答案有点大,只需要输出模1000000007的值。
Input
第一行一个整数n。
Output
一行一个整数ans,表示答案模1000000007的值。
Sample Input
2
Sample Output
8
HINT
对于100%的数据n <= 10^9。
题解:前置技能:
然后直接上莫比乌斯反演
用杜教筛处理μ(d),然后喜闻乐见的分块~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#define mod 1000000007
using namespace std;
const int m=10000000;
typedef long long ll;
int n,num;
ll ans;
int mu[m+10],sm[m+10],pri[m+10];
bool np[m+10];
map<ll,ll> mp;
ll getsm(ll x)
{
if(x<=m) return sm[x];
if(mp[x]) return mp[x];
ll ret=1,i,last;
for(i=2;i<=x;i=last+1)
{
last=x/(x/i);
ret=(ret-(last-i+1)*getsm(x/i)%mod+mod)%mod;
}
mp[x]=ret;
return ret;
}
ll getf(ll x)
{
ll ret=0,i,last;
for(i=1;i<=x;i=last+1)
{
last=x/(x/i);
ret=(ret-(last-i+1)*(x/i)%mod+mod)%mod;
}
return ret*ret%mod;
}
int main()
{
scanf("%d",&n);
ll i,j,last;
sm[1]=mu[1]=1;
for(i=2;i<=m;i++)
{
if(!np[i]) pri[++num]=i,mu[i]=-1;
sm[i]=sm[i-1]+mu[i];
for(j=1;j<=num&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(i=1;i<=n;i=last+1)
{
last=n/(n/i);
ans=(ans+(getsm(last)-getsm(i-1)+mod)%mod*getf(n/i)%mod)%mod;
}
printf("%lld",ans);
return 0;
}