Netty writeAndFlush()方法分为两步, 先 write 再 flush
@Override
public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) {
DefaultChannelHandlerContext next;
next = findContextOutbound(MASK_WRITE);
ReferenceCountUtil.touch(msg, next);
next.invoker.invokeWrite(next, msg, promise);
next = findContextOutbound(MASK_FLUSH);
next.invoker.invokeFlush(next);
return promise;
}
以上是DefaultChannelHandlerContext中的writeAndFlush方法, 可见实际上是先调用了write, 然后调用flush
1. write
write方法从TailHandler开始, 穿过中间自定义的各种handler以后到达HeadHandler, 然后调用了HeadHandler的成员变量Unsafe的write
如下
@Override
public void write(Object msg, ChannelPromise promise) {
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
// If the outboundBuffer is null we know the channel was closed and so
// need to fail the future right away. If it is not null the handling of the rest
// will be done in flush0()
// See https://github.com/netty/netty/issues/2362
safeSetFailure(promise, CLOSED_CHANNEL_EXCEPTION);
// release message now to prevent resource-leak
ReferenceCountUtil.release(msg);
return;
}
outboundBuffer.addMessage(msg, promise);
}
最终会把需要write的msg和promise(也就是一个future, 我们拿到手的future, 添加Listener的也是这个)放入到outboundBuffer中, msg和promise在outboundBuffer中的存在形式是一个自定义的结构体Entry.
也就是说调用write方法实际上并不是真的将消息写出去, 而是将消息和此次操作的promise放入到了一个队列中
2. flush
flush也是从Tail开始, 最后到Head, 最终调用的也是Head里的unsafe的flush0()方法, 然后flush0()里再调用doWrite()方法, 如下:
@Override
protected void doWrite(ChannelOutboundBuffer in) throws Exception {
int writeSpinCount = -1; for (;;) {
Object msg = in.current();
if (msg == null) {
// Wrote all messages.
clearOpWrite();
break;
} if (msg instanceof ByteBuf) {
ByteBuf buf = (ByteBuf) msg;
int readableBytes = buf.readableBytes();
if (readableBytes == 0) {
in.remove();
continue;
} boolean setOpWrite = false;
boolean done = false;
long flushedAmount = 0;
if (writeSpinCount == -1) {
writeSpinCount = config().getWriteSpinCount();
}
for (int i = writeSpinCount - 1; i >= 0; i --) {
int localFlushedAmount = doWriteBytes(buf); // 这里才是实际将数据写出去的地方if (localFlushedAmount == 0) {
setOpWrite = true;
break;
} flushedAmount += localFlushedAmount;
if (!buf.isReadable()) {
done = true;
break;
}
} in.progress(flushedAmount); if (done) {
in.remove();
} else {
incompleteWrite(setOpWrite);
break;
}
} else if (msg instanceof FileRegion) {
FileRegion region = (FileRegion) msg;
boolean setOpWrite = false;
boolean done = false;
long flushedAmount = 0;
if (writeSpinCount == -1) {
writeSpinCount = config().getWriteSpinCount();
}
for (int i = writeSpinCount - 1; i >= 0; i --) {
long localFlushedAmount = doWriteFileRegion(region);
if (localFlushedAmount == 0) {
setOpWrite = true;
break;
} flushedAmount += localFlushedAmount;
if (region.transfered() >= region.count()) {
done = true;
break;
}
} in.progress(flushedAmount); if (done) {
in.remove(); // 根据写出的数据的数量情况, 来判断操作是否完成, 如果完成则调用 in.remove()
} else {
incompleteWrite(setOpWrite);
break;
}
} else {
throw new UnsupportedOperationException("unsupported message type: " + StringUtil.simpleClassName(msg));
}
}
}
红字部分就是最后将数据写出去的地方, 这里写数据最终调用的是 GatheringByteChannel 的 write() 方法, 这是个原生Java接口, 具体实现依赖于实现这个接口的Java类, 例如会调用 NIO 的 SocketChannel 的write()方法, 至此, 实际写数据的过程出现了, SocketChannel可以运行在non-blocking模式, 也就是非阻塞异步模式, write数据会马上返回写入的数据数量 (并不一定是所有数据都写入成功, 对于是否写入了所有数据, Netty有自己的处理逻辑, 也就是上面代码中的红字的那段for循环, 具体参看下SocketChannel的javadoc和netty源码).
当所有数据写入SocketChannel成功, 开始调用in.remove(), 这个 in 就是第一步 1. write 里的那个 outboundBuffer, 他的类型是 ChannelOutboundBuffer, 代码如下:
public final boolean remove() {
if (isEmpty()) {
return false;
} Entry e = buffer[flushed];
Object msg = e.msg;
if (msg == null) {
return false;
} ChannelPromise promise = e.promise;
int size = e.pendingSize; e.clear(); flushed = flushed + 1 & buffer.length - 1; if (!e.cancelled) {
// only release message, notify and decrement if it was not canceled before.
safeRelease(msg);
safeSuccess(promise); // 这里, 调用了promise的trySuccess()方法, 触发Listener
decrementPendingOutboundBytes(size);
} return true;
}
最后会调用Promise的notifyListeners()操作, 触发Listener完成整个异步流程
---------
最后, 回到我们应用netty的时候的代码
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ctx.writeAndFlush(new Object()).addListener(new ChannelFutureListener() { @Override
public void operationComplete(ChannelFuture future) throws Exception {
if (future.isSuccess()) {
// do sth
} else {
// do sth
}
}
});
}
这就是整个流程
最后提一下, Netty的AbstractNioChannel里封装了selectionKey, 在accept socket的时候, socket会被注册到eventLoop()的Selector, 这个selectionKey就会被赋值, 如下
selectionKey = javaChannel().register(eventLoop().selector, 0, this);
在以后Selector的select()的时候, 则会通过这个key来获取到channel, 然后调用 AbstractChannel 里的 DefaultChannelPipeline 来触发 Handler 的 connect, read, write 等等事件...