Description
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。
Input
第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1 < = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。
Output
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
题解:
设`F[i]`为从开始到第i天花费的最小费用。`cost(i,j)`表示从第i天到第j天保持一个路线花费的最小费用。
于是有 `F\left[ i\right] =\min _{0 < j\leq i}\left\{ F\left[ j-1\right] +k+cost\left( j,i\right)*(i-j+1) \right\} `
为了方便`F[0]=-k`。
关于`cost(i,j)`的计算,就是从第i天到第j天完全可用的线路上的最短路,Djk即可。
`F[n]`即为答案。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
//by zrt
//problem:
using namespace std;
typedef long long LL;
const int inf(0x3f3f3f3f);
const double eps(1e-9);
int t,n,k,m,c;
int F[105];
int H[25],X[805],P[805],tot,E[805];
bool no[805];
inline void add(int x,int y,int z){
P[++tot]=y;X[tot]=H[x];H[x]=tot;E[tot]=z;
}
int d[25];
struct node{
int x,a,b;
node(int xx,int aa,int bb){
x=xx,a=aa,b=bb;
}
};
vector<node> v;
struct N{
int x,w;
N(int a=0,int b=0){
x=a,w=b;
}
friend bool operator < (N a,N b){
return a.w>b.w;
}
};
priority_queue<N> q;
bool vis[25];
int cost(int i,int j){//from i to j
memset(d,0x3f,sizeof d);
int L=j-i+1;
d[1]=0;
memset(no,0,sizeof no);
for(int a=0;a<c;a++){
if(!(v[a].b<i||v[a].a>j)){
no[v[a].x]=1;
}
}
memset(vis,0,sizeof vis);
q.push(N(1,0));
int x;
while(!q.empty()){
x=q.top().x;q.pop();
if(vis[x]) continue;else vis[x]=1;
for(int i=H[x];i;i=X[i]){
if(!no[P[i]]&&d[P[i]]>d[x]+E[i]){
d[P[i]]=d[x]+E[i];
q.push(N(P[i],d[P[i]]));
}
}
}
if(d[n]==inf) return inf/L;
return d[n];
}
int main(){
#ifdef LOCAL
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
scanf("%d%d%d%d",&t,&n,&k,&m);
for(int i=0,x,y,z;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
scanf("%d",&c);
v.reserve(c);
for(int i=0,x,a,b;i<c;i++){
scanf("%d%d%d",&x,&a,&b);
v.push_back(node(x,a,b));
}
memset(F,0x3f,sizeof F);
F[0]=-k;
for(int i=1;i<=t;i++){
for(int j=1;j<=i;j++){
if(F[j-1]>=inf) continue;
F[i]=min(F[i],F[j-1]+k+cost(j,i)*(i-j+1));
}
}
printf("%d\n",F[t]);
return 0;
}