莫比乌斯的模板题
都是差不多的
F(m)为gcd(i,j) = m(i∈[1,m],j∈[1,n])的个数
f(m) = ∑(m\d) F(d) 意义为gcd(i,j)为m的倍数的个数
运用莫比乌斯反演得到
F(m) = ∑(m\d)μ(d/m) * f(d)
#include <iostream>View Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
#define MOD 10007
const int ListSize = 10005;
int PrimeSize,n;
int isPrime[ListSize],Mu[ListSize],Prime[ListSize];
int total[ListSize],f[ListSize],a[ListSize];
void Init(){
Mu[1] = 1;
memset(isPrime,1,sizeof(isPrime));
for (int i=2;i<=ListSize;i++){
if (isPrime[i]){
PrimeSize ++;
Prime[PrimeSize] = i;
Mu[i] = -1;
}
for (int j=1;j<=PrimeSize && Prime[j] * i<= ListSize;j++){
isPrime[i*Prime[j]] = 0;
if (i % Prime[j] == 0){
Mu[i*Prime[j]] = 0;
break;
}
else {
Mu[i*Prime[j]] = -Mu[i];
}
}
}
}
int main(){
// freopen("test.in","r",stdin);
Init();
while (cin >> n){
int maxn = 0;
memset(total,0,sizeof(total));
memset(f,0,sizeof(f));
for (int i=0;i<n;i++){
scanf("%d",&a[i]);
total[a[i]] ++;
maxn = max(maxn,a[i]);
}
for (int i=1;i<=maxn;i++){
for (int j=i;j<=maxn;j+=i){
f[i] += total[j];
}
}
LL ans = 0,temp;
for (int i=1;i<=maxn;i++){
temp = 0;
for (int j=i;j<=maxn;j+=i){
temp = (temp + Mu[j/i] * f[j] * f[j] % MOD) % MOD;
}
ans = (ans + temp * 1ll * i % MOD * (i-1) % MOD) % MOD;
}
cout << ans << endl;
}
}
#include <iostream>View Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int ListSize = 100005;
int PrimeSize;
int isPrime[ListSize],Mu[ListSize],Prime[ListSize];
int Sum[ListSize];
int a,b,c,d,k,T;
void Init(){
Mu[1] = 1; Sum[0] = 0;
memset(isPrime,1,sizeof(isPrime));
for (int i=2;i<=ListSize;i++){
if (isPrime[i]){
PrimeSize ++;
Prime[PrimeSize] = i;
Mu[i] = -1;
}
for (int j=1;j<=PrimeSize && Prime[j] * i<= ListSize;j++){
isPrime[i*Prime[j]] = 0;
if (i % Prime[j] == 0){
Mu[i*Prime[j]] = 0;
break;
}
else {
Mu[i*Prime[j]] = -Mu[i];
}
}
}
for (int i=1;i<ListSize;i++){
Sum[i] = Sum[i-1] + Mu[i];
}
}
int main(){
// freopen("test.in","r",stdin);
Init();
cin >> T;
for (int times = 1; times <= T; times ++){
cin >> a >> b >> c >> d >> k;
cout << "Case " << times << ": ";
if (k == 0){
cout << "0" << endl; continue;
}
b = b / k;
d = d / k;
if (b > d){
swap(b,d);
}
LL ans1 = 0;
int last;
for (int i=1;i<=b;i=last+1){
last = min(b/(b/i),d/(d/i));
ans1 += (LL)(Sum[last] - Sum[i-1]) * (b/i) * (d/i);
}
LL ans2 = 0;
for (int i=1;i<=b;i=last+1){
last = b/(b/i);
ans2 += (LL) (Sum[last] - Sum[i-1]) * (b/i) * (b/i);
}
LL ans = ans1 - ans2 / 2;
cout << ans << endl;
}
}