快速排序的三个步骤:
1、分解:将数组A[l...r]划分成两个(可能空)子数组A[l...p-1]和A[p+1...r],使得A[l...p-1]中的每个元素都小于等于A(p),而且,小于等于A[p+1...r]中的元素。下标p也在这个划分过程中计算。
2、解决:通过递归调用快速排序,对数组A[l...p-1]和A[p+1...r]排序。
3、合并:因为两个子数组时就地排序,将它们的合并并不需要操作,整个数组A[l..r]已经排序。
1.快速排序的基础实现:
QUICKSORT(A, l, r)
if l < r
then q = PARTION(A, l, r)
QUICKSORT(A, l, p-1)
QUICKSORT(A, p+1, r)
两路PARTION算法主要思想:
move from left to find an element that is not less
move from right to find an element that is not greater
stop if pointers have crossed
exchange
实现代码:
int partition(double* a, int left, int right)
{
double x = a[right];
int i = left-1, j = right;
for (;;)
{
while(a[++i] < x) { }
while(a[--j] > x) { if(j==left) break;}
if(i < j)
swap(a[i], a[j]);
else break;
}
swap(a[i],a[right]);
return i;
}
void quickSort1(double* a, int left, int right)
{
if (left<right)
{
int p = partition(a, left, right);
quickSort1(a, left, p-1);
quickSort1(a, p+1, right);
}
}
2.非递归算法:其实就是手动利用栈来存储每次分块快排的起始点,栈非空时循环获取中轴入栈。
实现代码:
void quickSort2(double* a, int left, int right)
{
stack<int> t;
if(left<right)
{
int p = partition(a, left, right);
if (p-1>left)
{
t.push(left);
t.push(p-1);
}
if (p+1<right)
{
t.push(p+1);
t.push(right);
}
while(!t.empty())
{
int r = t.top();
t.pop();
int l = t.top();
t.pop();
p = partition(a, l, r);
if (p-1>l)
{
t.push(l);
t.push(p-1);
}
if (p+1<r)
{
t.push(p+1);
t.push(r);
}
}
}
}
3.三路划分快速排序算法:
实现代码:
void quickSort3Way(double a[], int left, int right)
{
if(left < right)
{
double x = a[right];
int i = left-1, j = right, p = left-1, q = right;
for (;;)
{
while (a[++i] < x) {}
while (a[--j] > x) {if(j==left) break;}
if(i < j)
{
swap(a[i], a[j]);
if (a[i] == x) {p++; swap(a[p], a[i]);}
if (a[j] == x) {q--; swap(a[q], a[j]);}
}
else break;
}
swap(a[i], a[right]); j = i-1; i=i+1;
for (int k=left; k<=p; k++, j--) swap(a[k], a[j]);
for (int k=right-1; k>=q; k--, i++) swap(a[i], a[k]);
quickSort3Way(a, left, j);
quickSort3Way(a, i, right);
}
}
4.测试代码:
#include <iostream>
#include <stack>
#include <ctime>
using namespace std;
// 产生(a,b)范围内的num个随机数
double* CreateRand(double a, double b, int num)
{
double *c;
c = new double[num];
srand((unsigned int)time(NULL));
for (int i=0; i<num; i++)
c[i] = (b-a)*(double)rand()/RAND_MAX + a;
return c;
}
// 两路划分,获取中轴,轴左边数小于轴,轴右边数大于轴
double partition(double* a, int left, int right)
{
...
}
// 1.递归快速排序,利用两路划分
void quickSort1(double* a, int left, int right)
{
...
}
// 2.非递归快速排序,手动利用栈来存储每次分块快排的起始点,栈非空时循环获取中轴入栈
void quickSort2(double* a, int left, int right)
{
...
}
// 3.利用三路划分实现递归快速排序
void quickSort3Way(double a[], int left, int right)
{
...
}
void main()
{
double *a, *b, *c;
int k=10000000;
time_t start,end;
a = CreateRand(0,1,k);
b = CreateRand(0,1,k);
c = CreateRand(0,1,k);
start = clock();
quickSort1(a,0,k-1);
end = clock();
cout<<"1.recursive "<<1.0*(end-start)/CLOCKS_PER_SEC<<" seconds"<<endl;
start = clock();
quickSort2(b,0,k-1);
end = clock();
cout<<"2.non-recursive "<<1.0*(end-start)/CLOCKS_PER_SEC<<" seconds"<<endl;
start = clock();
quickSort3Way(c,0,k-1);
end = clock();
cout<<"3.3 way "<<1.0*(end-start)/CLOCKS_PER_SEC<<" seconds"<<endl;
cout<<endl;
system("pause");
}
result:
1.recursive 1.951 seconds
2.non-recursive 2.224 seconds
3.3 way 1.677 seconds
结果可以看出非递归算法由于需要手动进行算法过程中的变量保存,执行效率低于递归算法;3路划分算法利用少量多余的交换减少了快排的复杂度,执行效率高于传统2路快排算法。