复习一下斜率优化:
令 $f_{i}$ 表示从 1 考虑到 $i$ 的最优结果.
得 $f_{i}=min${ $f_{j}+(sum_{i}-sum_{j}+i-j-1-L)^{2}$}
如果直接枚举,是 $O(n^{2})$ 的,太慢了!!!
考虑斜率优化:
令 $k<j$,考虑什么时候 $j$ 比 $k$ 优:
$fj+(sumi−sumj+i−j−1−L)^{2}<fk+(sumi−sumk+i−k−1−L)^{2}$
令 $a_{i}=sum_{i}+i$ ,$b_{i}=sum_{i}+i+1+L$ (为了简化计算)
得: $f_{j}+(a_{i}-b_{j})^{2}<f_{k}+(a_{i}-b_{k})^{2}$
化简一下,得:$\frac{f_{j}+b_{j}^{2}-(f_{k}+b_{k}^{2})}{b_{j}-b_{k}}<2\times a_{i}$
令 $g[x]=f_{x}+b_{x}^{2}$
上面式子为 $\frac{g_{j}-g_{k}}{b_{j}-b{k}}$,看上去是不是很熟悉 ?
这不就是一次函数斜率得形式嘛......
可以把 $j,k$ 都看作二维平面上的点 $(b_{j},g_{j})$ 与 $(b_{k},g_{k})$
那么, $j$ 的答案优于 $k$ 是在二者得斜率小于 $2\times a_{i}$ 的情况下成立的.
所以说,我们要求的 $j$ 就是编号最大的与前一个点的斜率小于 $2a_{i}$ 的值.
手画一下,发现这道题中我们要维护的其实就是一个下凸包.
根据我们每一次的斜率 $2\times a_{i}$,不难发现这个东西是单调递增的,所以当我们找到答案 $tmp$ 时,$tmp$ 前的所有点就都变成无用点,直接弹掉即可.
而每一次新加入一个点,就顺便维护凸包的形状,将不合法的点从队尾弹出即可.
令 $f_{i}$ 表示从 1 考虑到 $i$ 的最优结果.
得 $f_{i}=min${ $f_{j}+(sum_{i}-sum_{j}+i-j-1-L)^{2}$}
如果直接枚举,是 $O(n^{2})$ 的,太慢了!!!
考虑斜率优化:
令 $k<j$,考虑什么时候 $j$ 比 $k$ 优:
$fj+(sumi−sumj+i−j−1−L)^{2}<fk+(sumi−sumk+i−k−1−L)^{2}$
令 $a_{i}=sum_{i}+i$ ,$b_{i}=sum_{i}+i+1+L$ (为了简化计算)
得: $f_{j}+(a_{i}-b_{j})^{2}<f_{k}+(a_{i}-b_{k})^{2}$
化简一下,得:$\frac{f_{j}+b_{j}^{2}-(f_{k}+b_{k}^{2})}{b_{j}-b_{k}}<2\times a_{i}$
令 $g[x]=f_{x}+b_{x}^{2}$
上面式子为 $\frac{g_{j}-g_{k}}{b_{j}-b{k}}$,看上去是不是很熟悉 ?
这不就是一次函数斜率得形式嘛......
可以把 $j,k$ 都看作二维平面上的点 $(b_{j},g_{j})$ 与 $(b_{k},g_{k})$
那么, $j$ 的答案优于 $k$ 是在二者得斜率小于 $2\times a_{i}$ 的情况下成立的.
所以说,我们要求的 $j$ 就是编号最大的与前一个点的斜率小于 $2a_{i}$ 的值.
手画一下,发现这道题中我们要维护的其实就是一个下凸包.
根据我们每一次的斜率 $2\times a_{i}$,不难发现这个东西是单调递增的,所以当我们找到答案 $tmp$ 时,$tmp$ 前的所有点就都变成无用点,直接弹掉即可.
而每一次新加入一个点,就顺便维护凸包的形状,将不合法的点从队尾弹出即可.
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 100000 + 123;
long long s[maxn], f[maxn];
int l, n, q[maxn];
inline long long re_x(int i){ return s[i]; }
inline long long re_y(int i){ return f[i] + (s[i] + l) * (s[i] + l); }
inline double get_slope(int i,int j){return (double)(re_y(i) - re_y(j)) / (re_x(i) - re_x(j)); }
int main()
{
scanf("%d%d",&n,&l);
for(int i = 1;i <= n; ++i) scanf("%lld",&s[i]), s[i] += s[i-1];
for(int i = 1;i <= n; ++i) s[i] += i;
int head = 0, tail = 0;
for(int i = 1;i <= n; ++i)
{
while(head < tail && get_slope(q[head], q[head + 1]) < 2 * s[i] ) ++ head;
f[i] = f[q[head]] + (s[i] - s[q[head]] - 1 - l) * (s[i] - s[q[head]] - 1 - l);
while(tail > head && get_slope(q[tail], i) < get_slope(i, q[tail - 1])) --tail;
q[++tail] = i;
}
printf("%lld",f[n]);
return 0;
}