【HDU】4888 Redraw Beautiful Drawings 网络流【推断解是否唯一】

时间:2021-06-22 03:50:46

传送门:

pid=4888">【HDU】4888 Redraw Beautiful Drawings

题目分析:

比赛的时候看出是个网络流,可是没有敲出来。各种反面样例推倒自己(究其原因是不愿意写暴力推断的)。。

首先是简单的行列建边。源点向行建边。容量为该行元素和,汇点和列建边。容量为该列元素和。全部的行向全部的列建边,容量为K。

跑一次最大流。满流则有解,否则无解。

接下来是推断解是否唯一。

这个题解压根没看懂。还是暴力大法好。

最简单的思想就是枚举在一个矩形的四个端点。设A、D为主对角线上的端点。B、C为副对角线上的端点。仅仅要A、D不等于k且B、C不等于0,那么有解。

相应的仅仅要B、C不等于k且A、D不等于0,那么相同有解。

那么。枚举全部的矩形复杂度高达O(N^4),太大了,我们须要减少复杂度。

那么我们该怎样减少复杂度?

如今我们设立一个二维数组can[ i ][ j ]表示当前行之前的行中存在一行满足列i的元素不等于0且列j的元素不等于k,那么can[ i ][ j ] = 1,假设本行同样列满足列i不等于k且列j不等于0。那么说明存在多解。否则将can[ j ][ i ]标记为1。然后继续扫描。

上面的过程推断得出是唯一解后,输出解。( i , j )相应的元素为行i到列j的反向边的流量。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i )
#define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a ) const int MAXM = 405 ;
const int MAXN = 1005 ;
const int MAXQ = 500000 ;
const int MAXE = 500000 ;
const int INF = 0x3f3f3f3f ; struct Edge {
int v , c , n ;
Edge () {}
Edge ( int v , int c , int n ) : v ( v ) , c ( c ) , n ( n ) {}
} ; struct NetWork {
Edge E[MAXE] ;
int H[MAXN] , cntE ;
int d[MAXN] , cur[MAXN] , num[MAXN] , pre[MAXN] ;
int Q[MAXQ] , head , tail ;
int n , m , k ;
int s , t , nv ;
int flow ; int row[MAXN] , col[MAXN] ;
int G[MAXM][MAXM] ;
int can[MAXM][MAXM] ; void init () {
cntE = 0 ;
CLR ( H , -1 ) ;
} void addedge ( int u , int v , int c ) {
E[cntE] = Edge ( v , c , H[u] ) ;
H[u] = cntE ++ ;
E[cntE] = Edge ( u , 0 , H[v] ) ;
H[v] = cntE ++ ;
} void rev_bfs () {
CLR ( d , -1 ) ;
CLR ( num , 0 ) ;
head = tail = 0 ;
Q[tail ++] = t ;
d[t] = 0 ;
num[d[t]] = 1 ;
while ( head != tail ) {
int u = Q[head ++] ;
for ( int i = H[u] ; ~i ; i = E[i].n ) {
int v = E[i].v ;
if ( ~d[v] )
continue ;
d[v] = d[u] + 1 ;
num[d[v]] ++ ;
Q[tail ++] = v ;
}
}
} int ISAP () {
CPY ( cur , H ) ;
rev_bfs () ;
flow = 0 ;
int u = pre[s] = s , i ;
while ( d[s] < nv ) {
if ( u == t ) {
int f = INF , pos ;
for ( i = s ; i != t ; i = E[cur[i]].v )
if ( f > E[cur[i]].c ) {
f = E[cur[i]].c ;
pos = i ;
}
for ( i = s ; i != t ; i = E[cur[i]].v ) {
E[cur[i]].c -= f ;
E[cur[i] ^ 1].c += f ;
}
flow += f ;
u = pos ;
}
for ( i = cur[u] ; ~i ; i = E[i].n )
if ( E[i].c && d[u] == d[E[i].v] + 1 )
break ;
if ( ~i ) {
cur[u] = i ;
pre[E[i].v] = u ;
u = E[i].v ;
}
else {
if ( 0 == ( -- num[d[u]] ) )
break ;
int mmin = nv ;
for ( i = H[u] ; ~i ; i = E[i].n )
if ( E[i].c && mmin > d[E[i].v] ) {
cur[u] = i ;
mmin = d[E[i].v] ;
}
d[u] = mmin + 1 ;
num[d[u]] ++ ;
u = pre[u] ;
}
}
return flow ;
} void put () {
printf ( "Unique\n" ) ;
FOR ( i , 1 , n )
FOR ( j , 1 , m )
printf ( "%d%c" , G[i][j] , j < m ? ' ' : '\n' ) ;
} void build () {
FOR ( u , 1 , n )
for ( int i = H[u] ; ~i ; i = E[i].n )
if ( E[i].v )
G[u][E[i].v - n] = E[i ^ 1].c ;
} int check () {
CLR ( can , 0 ) ;
FOR ( r , 1 , n )
FOR ( i , 1 , m )
FOR ( j , i + 1 , m ) {
int tmp1 = 0 , tmp2 = 0 ;
if ( G[r][i] != k && G[r][j] != 0 ) {
if ( can[i][j] )
return 1 ;
tmp1 = 1 ;
}
if ( G[r][i] != 0 && G[r][j] != k ) {
if ( can[j][i] )
return 1 ;
tmp2 = 1 ;
}
if ( tmp1 )
can[j][i] = tmp1 ;
if ( tmp2 )
can[i][j] = tmp2 ;
}
return 0 ;
} void solve () {
int sum1 = 0 ;
int sum2 = 0 ;
init () ;
s = 0 ;
t = n + m + 1 ;
nv = t + 1 ;
FOR ( i , 1 , n ) {
scanf ( "%d" , &row[i] ) ;
addedge ( s , i , row[i] ) ;
sum1 += row[i] ;
}
FOR ( i , 1 , m ) {
scanf ( "%d" , &col[i] ) ;
addedge ( i + n , t , col[i] ) ;
sum2 += col[i] ;
}
FOR ( i , 1 , n )
FOR ( j , 1 , m )
addedge ( i , n + j , k ) ;
ISAP () ;
if ( flow != sum1 || flow != sum2 ) {
printf ( "Impossible\n" ) ;
return ;
}
build () ;
int multi = check () ;
if ( multi )
printf ( "Not Unique\n" ) ;
else
put () ;
}
} nw ; int main () {
while ( ~scanf ( "%d%d%d" , &nw.n , &nw.m , &nw.k ) )
nw.solve () ;
return 0 ;
}

题解依然没看懂,可是DFS的方法会了。思想和上面的类似,用回溯的思想找环。可知长度等于2的环是不可行的(由于两个点都是自己),必须是长度大于等于4的环(能形成环必然长度为偶数)。我们仅仅要对每一行回溯搜索,假设沿着行到列还有流容量能够降低(属于的元素能够变大)或者列到行还有容量能够降低(即行到列还有容量能够添加,属于的元素能够变小)的边走能找到环就说明多解。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i )
#define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define CLR( a , x ) memset ( a , x , sizeof a )
#define CPY( a , x ) memcpy ( a , x , sizeof a ) const int MAXM = 1005 ;
const int MAXN = 1005 ;
const int MAXQ = 2000000 ;
const int MAXE = 2000000 ;
const int INF = 0x3f3f3f3f ; struct Edge {
int v , c , n ;
Edge () {}
Edge ( int v , int c , int n ) : v ( v ) , c ( c ) , n ( n ) {}
} ; struct NetWork {
Edge E[MAXE] ;
int H[MAXN] , cntE ;
int d[MAXN] , cur[MAXN] , num[MAXN] , pre[MAXN] ;
int Q[MAXQ] , head , tail ;
int n , m , k ;
int s , t , nv ;
int flow ; int row[MAXN] , col[MAXN] ;
int G[MAXM][MAXM] ;
int vis[MAXN] ; void init () {
cntE = 0 ;
CLR ( H , -1 ) ;
} void addedge ( int u , int v , int c ) {
E[cntE] = Edge ( v , c , H[u] ) ;
H[u] = cntE ++ ;
E[cntE] = Edge ( u , 0 , H[v] ) ;
H[v] = cntE ++ ;
} void rev_bfs () {
CLR ( d , -1 ) ;
CLR ( num , 0 ) ;
head = tail = 0 ;
Q[tail ++] = t ;
d[t] = 0 ;
num[d[t]] = 1 ;
while ( head != tail ) {
int u = Q[head ++] ;
for ( int i = H[u] ; ~i ; i = E[i].n ) {
int v = E[i].v ;
if ( ~d[v] )
continue ;
d[v] = d[u] + 1 ;
num[d[v]] ++ ;
Q[tail ++] = v ;
}
}
} int ISAP () {
CPY ( cur , H ) ;
rev_bfs () ;
flow = 0 ;
int u = pre[s] = s , i ;
while ( d[s] < nv ) {
if ( u == t ) {
int f = INF , pos ;
for ( i = s ; i != t ; i = E[cur[i]].v )
if ( f > E[cur[i]].c ) {
f = E[cur[i]].c ;
pos = i ;
}
for ( i = s ; i != t ; i = E[cur[i]].v ) {
E[cur[i]].c -= f ;
E[cur[i] ^ 1].c += f ;
}
flow += f ;
u = pos ;
}
for ( i = cur[u] ; ~i ; i = E[i].n )
if ( E[i].c && d[u] == d[E[i].v] + 1 )
break ;
if ( ~i ) {
cur[u] = i ;
pre[E[i].v] = u ;
u = E[i].v ;
}
else {
if ( 0 == ( -- num[d[u]] ) )
break ;
int mmin = nv ;
for ( i = H[u] ; ~i ; i = E[i].n )
if ( E[i].c && mmin > d[E[i].v] ) {
cur[u] = i ;
mmin = d[E[i].v] ;
}
d[u] = mmin + 1 ;
num[d[u]] ++ ;
u = pre[u] ;
}
}
return flow ;
} void put () {
printf ( "Unique\n" ) ;
FOR ( u , 1 , n )
for ( int i = H[u] ; ~i ; i = E[i].n ) {
int v = E[i].v ;
G[u][v - n] = E[i ^ 1].c ;
}
FOR ( i , 1 , n )
FOR ( j , 1 , m )
printf ( "%d%c" , G[i][j] , j < m ? ' ' : '\n' ) ;
} int dfs ( int u , int fa ) {
if ( vis[u] )
return 1 ;
vis[u] = 1 ;
for ( int i = H[u] ; ~i ; i = E[i].n ) {
int v = E[i].v ;
if ( v != fa && E[i].c && v != s && v != t )
if ( dfs ( v , u ) )
return 1 ;
}
vis[u] = 0 ;
return 0 ;
} void solve () {
int sum1 = 0 ;
int sum2 = 0 ;
init () ;
s = 0 ;
t = n + m + 1 ;
nv = t + 1 ;
FOR ( i , 1 , n ) {
scanf ( "%d" , &row[i] ) ;
addedge ( s , i , row[i] ) ;
sum1 += row[i] ;
}
FOR ( i , 1 , m ) {
scanf ( "%d" , &col[i] ) ;
addedge ( i + n , t , col[i] ) ;
sum2 += col[i] ;
}
FOR ( i , 1 , n )
FOR ( j , 1 , m )
addedge ( i , n + j , k ) ;
ISAP () ;
if ( flow != sum1 || flow != sum2 ) {
printf ( "Impossible\n" ) ;
return ;
}
int flag = 1 ;
CLR ( vis , 0 ) ;
FOR ( i , 1 , n ) {
if ( !flag )
break ;
if ( dfs ( i , 0 ) )
flag = 0 ;
}
if ( !flag )
printf ( "Not Unique\n" ) ;
else
put () ;
}
} nw ; int main () {
while ( ~scanf ( "%d%d%d" , &nw.n , &nw.m , &nw.k ) )
nw.solve () ;
return 0 ;
}