在Python中,这种一边循环一边计算的机制,称为生成器:generator
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
当然,上面这种不断调用next(g)
实在是太麻烦了,正确的方法是使用for
循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
迭代器:Iterator,
可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
把list
、dict
、str
等Iterable
变成Iterator
可以使用iter()
函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
小结
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的,例如:
for x in [1, 2, 3, 4, 5]:
pass
实际上完全等价于:
it = iter([1, 2, 3, 4, 5])# 首先获得Iterator对象:
while True:# 循环:
try:
x = next(it) # 获得下一个值:
except StopIteration: break # 遇到StopIteration就退出循环