前言:
之前学习Python自动化,接触了不少python的学习,对生成器印象尤其深,网上也看了很多介绍,下面主要是这些概念的个人学习整理(如侵删)。
正文:
如要创建一个非常大的列表,受到内存限制,列表容量肯定也是有限的,而且很多时候,访问只是几个元素,剩余的空间更是白白浪费,
如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素,Python的生成器就为之而生。
Python这门语言中,生成器毫无疑问是最有用的特性之一,也是使用的最不广泛的Python特性之一。因为其他很多语言并无生成器这个概念
生成器(generator):一边循环一边计算的机制,不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束。
创建一个generator:
方案一:
只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator,可以通过next()
函数获得generator的下一个返回值:
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
.
.
.
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
方案二:
yield的使用:
在python中,当你定义一个函数,使用了yield关键字时,这个函数就是一个生成器,yield是一个关键词,类似return, 不同之处在于,yield返回的是一个生成器,以斐波拉契数列(Fibonacci)为例
著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
def fib(max):
a, b = 0, 1
while a < max:
yield b
a, b = b, a + b
运行:
for n in fib(6):
print(n)
1
1
2
3
5
8
迭代器(Iterator)
可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
查看帮助文档help(Iterator),可知道,Iterable继承自object, Iterator继承自Iterable
可以使用isinstance()
判断一个对象是否是Iterator
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
生成器既能使用for循环,也能被next()函数调用并不断返回下一个值,所有:
生成器都是Iterator
对象,但list
、dict
、str
虽然是Iterable
,却不是Iterator
。
Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。
可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以:
Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
参考来源: