20145327 《信息安全系统设计基础》第十一周学习总结
教材学习内容总结
8.1 异常
异常的剖析,如下图所示:
8.1.1 异常处理
异常表:当处理器检测到有事件发生时,它会通过跳转表,进行一个间接过程调用(异常),到异常处理程序。
异常号:系统中可能的某种类型的异常都分配了一个唯一的非负整数的异常号。异常号是到异常表中的索引。
异常类似于过程调用,但有一些重要的不同之处:
(1)过程调用时,在跳转到处理程序之前,处理器将返回地址压入栈中,然而,根据异常的类型,返回地址要么是当前指令(当事件发生时正在执行的指令)要么是下一条指令(如果事件不发生,将会在当前指令后执行的指令)。
(2)处理器也把一些额外的处理器状态压到栈里,在处理程序返回时,重新开始被中断的程序会需要这些状态。比如,一个A32系统将包含当前条件码和其他内容的EHAGS寄存器压入栈中。
(3)如果控制从一个用户程序转移到内核,那么所有这些项目都被压到内核栈中,而不是压到用户栈中。
(4)异常处理程序运行在内核模式下(见824节)这意味着它们对所有的系统资源都有完全的访问权限
一旦硬件触发了异常,异常处理程序则由软件完成。
8.1.2 异常的类别
异常的类别——中断、陷阱、故障和终止
中断处理:异步是指硬件中断不是由任何一条指令造成的,而是由外部I/O设备的事件造成的。
- 陷阱和系统调用:系统调用是一些封装好的函数,内部通过指令int n实现。
陷阱最重要的用途是提供系统调用。系统调用运行在内核模式中,并且可以访问内核中的栈。
系统调用的参数是通过通用寄存器而不是栈来传递的,如,%eax存储系统调用号,%ebx,%ecx,%edx,%esi,%edi,%ebp最多存储六个参数,%esp不能用,因为进入内核模式后,会覆盖掉它。 - 故障
一个经典的的故障示例是缺页异常,当指令引用一个虚拟地址,而该虚拟地址相对应的物理页面不在存储器中,因此必须从磁盘中取出时,就会发生故障。 - 终止
终止是不可恢复的致命错误造成的结果,通常是一些硬件错误,比如DRAM或者SRAM位被损坏时发生的奇偶错误。终止处理程序从不将控制返回给应用程序。处理程序将控制返回给一个abort例程,该例程会终止这个应用程序。
8.1.3 linux/ia32系统中的异常
Linux/IA32故障和终止
除法错误
一般保护故障
缺页
机器检查
Linux/IA32系统调用
每个系统调用都有一个唯一的整数号,对应于一个到内核中跳转表的偏移量。
8.2 进程
进程(操作系统层):逻辑控制流,私有地址空间,多任务,并发,并行,上下文,上下文切换,调度。
进程就是一个执行中的程序实例。系统中的每个程序都是运行在某个进程的上下文中的。
进程提供给应用程序的关键抽象:a)一个独立的逻辑控制流 ;b)一个私有的地址空间。
8.3 系统调用错误处理
当Unix系统级函数遇到错误时,它们典型地会返回―1,并设置全局整数变量errno来表示什么出错了。程序员应该总是检查错误,但是不幸的是,许多人都忽略了错误检查,因为它使代码变得臃肿,而且难以读懂。
通过使用错误处理包装函数,我们可以更进一步地简化我们的代码。对于一个给定的基本函数foo,我们定义一个具有相同参数的包装函数Foo,但是第一个字母大写了。
我们将在本书剩余的部分中都使用错误处理包装函数数。它们能够保持代码示例简洁,而又不会给你错误的假象,认为允许忽略错误检查。注意,当在本书中谈到系统级函数时,我们总是用它们的小写字母的基本名字来引用它们,而不是用它们大写的包装函数名来引用!关于Unix错误处理以及本书中使用的错误处理包装函数的讨论,请参见附录A。包装函数定义在一个叫做csapp.c的文件中,它们的原型定义在一个叫做。csapp.h的头文件中。
8.4.3 回收子进程
回收:当一个进程终止时,内核并不立即把它从系统中清除。相反,进程被保持在一种已终止的状态中,直到被它的父进程回收。
僵死进程:一个终止了但是还未被回收的进程称为僵死进程。
回收子进程的两种方法:1,内核的init进程 2,父进程waitpid函数
1)如果父进程没有回收它的僵死子进程就终止了,那么内核就会安排init进城来回收它们。init进程的PID为1,并且是在系统初始化时创建的。
2)一个进程可以通过调用waitpid函数来等待它的子进程终止或停止。
waitpid函数有点复杂,默认地(当options=0时),waitpid挂起调用进程的执行,知道它的等待集合中的一个子进程终止。
1.判定等待集合的成员
2.修改默认行为
3.检查已回收子进程的退出状态
4.错误条件
5.wait函数
6.使用waitpid的示例
8.4.6 利用fork和execve运行程序
像Unix外壳和Web服务器这样的程序大量使用了fork和e×ecve函数。外壳是一个交互型的应用程序,它代表用户运行其他程序。最早的外壳是Sh程序,后面出现了一些变种,比如csh、tcsh、ksh和bash。外壳执行一系列的读/求值(readeaUte)步骤然后终止。
如果builtin_command返回0,那么外壳创建一个子进程,并在子进程中执行所请求的程序。如果用户要求在后台运行该程序,那么外壳返回到循环的顶部,等待下一个命令行否则,外壳使用Waitpid函数等待作业终止。当作业终止时,外壳就开始下一轮迭代。注意这个简单的外壳是有缺陷的,因为它并不回收它的后台子进程。修改这个缺陷就要求使用信号,我们将在下一节中讲述信号。
8.5 信号
一种更高层次的软件形式的异常,称为unix信号,它允许进程中断其他进程。
低层的硬件异常是由内核异常处理程序处理的,正常情况下,对用户进程而言是不可见的。信号提供了一种机制,通知用户进程发生了这些异常。
8.5.1 信号术语
传送一个信号到目的进程是由两个步骤组成的
1.发送信号。内核通过更新目的进程上下文中的某个状态,发送(递送)一个信号给目的进程。
发送信号可以有如下两种原因:
1)内核检测到一个系统事件。
2)一个进程调用了kill函数,显式地要求内核发送一个信号给目的进程,一个进程可以发送信号给它自己。
2.接收信号。当目的进程被内核强迫以某种方式的发送做出反应时,目的进程就接收了信号。进程可以忽略这个信号,终止或者通过执行一个称为信号处理程序的用户层函数不活这个信号。
一个只发出而没有被接收的信号叫做待处理信号。在任何时刻,一种类型至多只会有一个待处理信号。
一个进程可以有选择性地阻塞接收某种信号。当一种信号被阻塞时,他仍可以被发送,但是产生的待处理信号不会被接收,直到进程取消对这种信号的阻塞。
一个待处理信号最多只能被接收一次。
8.5.2 发送信号
1.进程组
进程组。每个进程都只属于一个进程组,进程组是由一个正整数进程组ID来标识的。 一个子进程和它的父进程同属于一个进程组,一个进程组可以通过使用setpgid函数来改变自己或者其他进程的进程组。
2.用/bin/kill程序发送信号
用/bin/kill程序可以向另外的进程发送任意的信号。
3.从键盘发送信号
从键盘发送信号外壳为每个作业创建一个独立的进程组。
4.用kill函数发送信号
进程通过调用kill函数发送信号给其他进程(包括它们自己)。
5.用alarm函数发送信号
进程可以通过调用alarm函数向他自己发送SIGALRM信号。
8.5.3 接收信号
当内核从一个异常处理程序返回,准备将控制传递给进程P时,他会检查进程P的未被阻塞的处理信号的集合。如果这个集合为空,那么内核将控制传递到P的逻辑控制流中的下一条指令;如果集合是非空的,那么内核选择集合中的某个信号K(通常是最小的K0,并且强制P接收信号K。收到这个信号会触发进程的某种行为。一旦进程完成了这个行为,那么控制就传递回P的逻辑控制流中的下一条指令。
每个信号类型都有一个预定的默认行为:
(1)进程终止
(2)进程终止并转储存储器
(3)进程停止直到被SIGCONT型号重启
(4)进程忽略该信号
signal函数可以通过下列三种方法之一来改变和信号signum相关联的行为:
(1)如果handler是SIG_IGN,那么忽略类型为signum的信号
(2)如果handler是SIG_DFL,那么类型为signum的信号行为恢复为默认行为
(3)否则,handler就是用户定义的函数的地址,这个函数成为信号处理程序,只要进程接收到一个类型为signum的信号,就会调用这个程序,通过把处理程序的地址传递到signal函数从而改变默认行为,这叫做设置信号处理程序。
但一个进程不活了一个类型为K的信号时,为信号K设置的处理程序被调用,一个整数参数被设置为K。这个参数允许同一个处理函数捕获不同类型的信号。
信号处理程序的执行中断main C函数的执行,类似于底层异常处理程序中断当前应用程序的控制流的方式,因为信号处理程序的逻辑控制流与主函数的逻辑控制流重叠,信号处理程序和主函数并发地运行。
8.5.4 信号处理问题
当一个程序要捕获多个信号时,一些细微的问题就产生了。
(1)待处理信号被阻塞。Unix信号处理程序通常会阻塞当前处理程序正在处理的类型的待处理信号。
(2)待处理信号不会排队等待。任意类型至多只有一个待处理信号。因此,如果有两个类型为K的信号传送到一个目的进程,而由于目的进程当前正在执行信号K的处理程序,所以信号K时阻塞的,那么第二和信号就简单地被简单的丢弃,他不会排队等待。
(3)系统调用可以被中断。像read、wait和accept这样的系统调用潜在地会阻塞进程一段较长的时间,称为慢速系统调用。在某些系统中,当处理程序捕获到一个信号时,被中断的慢速系统调用在信号处理程序返回时不再继续,而是立即返回给用户一个错误的条件,并将errno设置为EINTR。
不可以用信号来对其他进程中发生的事件计较。
8.5.5 可移植的信号处理
Signal包装函数设置的信号处理程序的信号处理语义:
(1)只有这个处理程序当前正在处理的那种类型的信号被阻塞
(2)和所有信号实现一样,信号不会排队等候
(3)只要有可能,被中断的系统调用会自动重启。
(4)一旦设置了信号处理程序,它就会一直保持,知道signal带着handler参数为SIG_IGN或者SIG_DFL被调用。
8.5.7 同步流以避免讨厌的并发错误
一般而言,流可能交错的数量是与指令的数量呈指数关系的。
以某种方式同步并交流,从而得到最大的可行的交错的集合,每个可行的交错都能得到正确的结果。
如何编写读写相同存储位置的并发流程序的问题,困扰着数代计算机科学家。比如,竞争问题。
8.6 非本地跳转
c语言提供了一种用户级异常控制流形式,称为本地跳转。通过setjmp和longjmp函数来提供。
setjmp函数只被调用一次,但返回多次:一次是当第一次调用setjmp,而调用环境保存在缓冲区env中时,一次是为每个相应的longjmp调用。另一方面,longjmp只调用一次,但从不返回。sig—函数是setjmp和longjmp函数的可以被信号处理程序使用的版本。
8.7 操作进程的工具
Linux系统提供了大量的监控和操作进程的有用工具:
STRACE:打印一个正在运行的程序和它的子进程调用的每个系统调用的轨迹。对于好奇的的工具。用-StatiC编译你的程序,能传到一个更干净的、不带学生而言,这是一个令人着迷有大量与共享库相关的输出的轨迹。
PS:列出当前系统中的进程(包括僵死进程)
TOP:打印出关于当前进程资源使用的信息。
PMAP:显示进程的存储器映射。proc:一个虚拟文件系统,以ASCII文本格式输出大量内核数数据结构的内容,用户程序可 cat 2 / proc / load avg” , 观察在Linux系统上的平均负载。
代码调试中的问题和解决过程
exec1
代码如下:
#include <stdio.h>
#include <unistd.h>
int main()
{
char *arglist[3];
arglist[0] = "ls";
arglist[1] = "-l";
arglist[2] = 0 ;//NULL
printf("* * * About to exec ls -l\n");
execvp( "ls" , arglist );
printf("* * * ls is done. bye");
return 0;
}
可以看到这个代码中用了execvp函数。
表头文件:
#include
定义函数:
int execvp(const char file ,char const argv []);
execvp()会从PATH 环境变量所指的目录中查找符合参数file 的文件名,找到后便执行该文件,然后将第二个参数argv传给该欲执行的文件。
如果执行成功则函数不会返回,执行失败则直接返回-1,失败原因存于errno中。
所以运行结果如下:
可以看到,exevp函数调用成功没有返回,所以没有打印出“* * * ls is done. bye”这句话
exec2
它与exec1的区别就在于exevp函数的第一个参数,exec1传的是ls,exec2直接用的arglist[0],不过由定义可得这两个等价,所以运行结果是相同的。
exec3
代码如下:
#include <stdio.h>
#include <unistd.h>
int main()
{
char *arglist[3];
char*myenv[3];
myenv[0] = "PATH=:/bin:";
myenv[1] = NULL;
arglist[0] = "ls";
arglist[1] = "-l";
arglist[2] = 0 ;
printf("* * * About to exec ls -l\n");
execlp("ls", "ls", "-l", NULL);
printf("* * * ls is done. bye\n");
}
这个代码里使用了execlp函数,用法如下:
头文件:
#include
定义函数:
int execlp(const char * file,const char * arg,....);
函数说明:
execlp()会从PATH 环境变量所指的目录中查找符合参数file的文件名,找到后便执行该文件,然后将第二个以后的参数当做该文件的argv[0]、argv[1]……,最后一个参数必须用空指针(NULL)作结束。如果用常数0来表示一个空指针,则必须将它强制转换为一个字符指针,否则将它解释为整形参数,如果一个整形数的长度与char * 的长度不同,那么exec函数的实际参数就将出错。如果函数调用成功,进程自己的执行代码就会变成加载程序的代码,execlp()后边的代码也就不会执行了.
返回值:
如果执行成功则函数不会返回,执行失败则直接返回-1,失败原因存于errno 中。
也就是说,这个代码指定了环境变量,然后依然执行了ls -l指令,成功后没有返回,所以最后一句话不会输出。运行结果同exec1.
forkdemo1
#include <stdio.h>
#include<sys/types.h>
#include<unistd.h>
int main()
{
int ret_from_fork, mypid;
mypid = getpid();
printf("Before: my pid is %d\n", mypid);
ret_from_fork = fork();
sleep(1);
printf("After: my pid is %d, fork() said %d\n",
getpid(), ret_from_fork);
return 0;
}
这个代码先是打印进程pid,然后调用fork函数生成子进程,休眠一秒后再次打印进程id,这时父进程打印子进程pid,子进程返回0.
运行结果如下:
forkdemo2
#include <stdio.h>
#include <unistd.h>
int main()
{
printf("before:my pid is %d\n", getpid() );
fork();
fork();
printf("aftre:my pid is %d\n", getpid() );
return 0;
}
这个代码调用两次fork,一共产生四个子进程,所以会打印四个aftre输出。
结果如图:
forkdemo3
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main()
{
int fork_rv;
printf("Before: my pid is %d\n", getpid());
fork_rv = fork(); /* create new process */
if ( fork_rv == -1 ) /* check for error */
perror("fork");
else if ( fork_rv == 0 ){
printf("I am the child. my pid=%d\n", getpid());
exit(0);
}
else{
printf("I am the parent. my child is %d\n", fork_rv);
exit(0);
}
return 0;
}
fork产生子进程,父进程返回子进程pid,不为0,所以输出父进程的那句话,子进程返回0,所以会输出子进程那句话。
结果如下:
foekdemo4
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main()
{
int fork_rv;
printf("Before: my pid is %d\n", getpid());
fork_rv = fork(); /* create new process */
if ( fork_rv == -1 ) /* check for error */
perror("fork");
else if ( fork_rv == 0 ){
printf("I am the child. my pid=%d\n", getpid());
printf("parent pid= %d, my pid=%d\n", getppid(), getpid());
exit(0);
}
else{
printf("I am the parent. my child is %d\n", fork_rv);
sleep(10);
exit(0);
}
return 0;
}
先打印进程pid,然后fork创建子进程,父进程返回子进程pid,所以输出parent一句,休眠十秒;子进程返回0,所以输出child与之后一句。
运行结果如下:
forkgdb
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int gi=0;
int main()
{
int li=0;
static int si=0;
int i=0;
pid_t pid = fork();
if(pid == -1){
exit(-1);
}
else if(pid == 0){
for(i=0; i<5; i++){
printf("child li:%d\n", li++);
sleep(1);
printf("child gi:%d\n", gi++);
printf("child si:%d\n", si++);
}
exit(0);
}
else{
for(i=0; i<5; i++){
printf("parent li:%d\n", li++);
printf("parent gi:%d\n", gi++);
sleep(1);
printf("parent si:%d\n", si++);
}
exit(0);
}
return 0;
}
这个的主要区别是在,父进程打印是先打印两句,然后休眠一秒,然后打印一句,子进程先打印一句,然后休眠一秒,然后打印两句。并且这两个线程是并发的,所以可以看到在一个线程休眠的那一秒,另一个线程在执行,并且线程之间相互独立互不干扰。
显示结果如下:
psh1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define MAXARGS 20
#define ARGLEN 100
int execute( char *arglist[] )
{
execvp(arglist[0], arglist);
perror("execvp failed");
exit(1);
}
char * makestring( char *buf )
{
char *cp;
buf[strlen(buf)-1] = '\0';
cp = malloc( strlen(buf)+1 );
if ( cp == NULL ){
fprintf(stderr,"no memory\n");
exit(1);
}
strcpy(cp, buf);
return cp;
}
int main()
{
char *arglist[MAXARGS+1];
int numargs;
char argbuf[ARGLEN];
numargs = 0;
while ( numargs < MAXARGS )
{
printf("Arg[%d]? ", numargs);
if ( fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n' )
arglist[numargs++] = makestring(argbuf);
else
{
if ( numargs > 0 ){
arglist[numargs]=NULL;
execute( arglist );
numargs = 0;
}
}
}
return 0;
}
这个代码就相当于你输入要执行的指令,回车表示输入结束,然后输入的每个参数对应到函数中,再调用对应的指令。
结果:
psh2
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <signal.h>
#define MAXARGS 20
#define ARGLEN 100
char *makestring( char *buf )
{
char *cp;
buf[strlen(buf)-1] = '\0';
cp = malloc( strlen(buf)+1 );
if ( cp == NULL ){
fprintf(stderr,"no memory\n");
exit(1);
}
strcpy(cp, buf);
return cp;
}
void execute( char *arglist[] )
{
int pid,exitstatus;
pid = fork();
switch( pid ){
case -1:
perror("fork failed");
exit(1);
case 0:
execvp(arglist[0], arglist);
perror("execvp failed");
exit(1);
default:
while( wait(&exitstatus) != pid )
;
printf("child exited with status %d,%d\n",
exitstatus>>8, exitstatus&0377);
}
}
int main()
{
char *arglist[MAXARGS+1];
int numargs;
char argbuf[ARGLEN];
numargs = 0;
while ( numargs < MAXARGS )
{
printf("Arg[%d]? ", numargs);
if ( fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n' )
arglist[numargs++] = makestring(argbuf);
else
{
if ( numargs > 0 ){
arglist[numargs]=NULL;
execute( arglist );
numargs = 0;
}
}
}
return 0;
}
比起1来,多了循环判断,不退出的话就会一直要你输入指令,并且对于子程序存在的状态条件。
结果如下:
testbuf1
#include <stdio.h>
#include <stdlib.h>
int main()
{
printf("hello");
fflush(stdout);
while(1);
}
效果是输出hello,然后换行
结果:
testbuf2
#include <stdio.h>
int main()
{
printf("hello\n");
while(1);
}
效果同上。
可知:fflush(stdout)的效果和换行符\n是一样的。
testbuf3
#include <stdio.h>
int main()
{
fprintf(stdout, "1234", 5);
fprintf(stderr, "abcd", 4);
}
将内容格式化输出到标准错误、输出流中。
结果如图:
testpid
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
int main()
{
printf("my pid: %d \n", getpid());
printf("my parent's pid: %d \n", getppid());
return 0;
}
输出当前进程pid和当前进程的父进程的pid。
testpp
#include <stdio.h>
#include <stdlib.h>
int main()
{
char **pp;
pp[0] = malloc(20);
return 0;
}
出现错误不知道为什么
testsystem
#include <stdlib.h>
int main ( int argc, char *argv[] )
{
system(argv[1]);
system(argv[2]);
return EXIT_SUCCESS;
} /* ---------- end of function main ---------- */
system()——执行shell命令,也就是向dos发送一条指令。这里是后面可以跟两个参数,然后向dos发送这两个命令,分别执行。如下图,输入ls和dir两个指令后,可以看到分别执行了。
waitdemo1
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#define DELAY 4
void child_code(int delay)
{
printf("child %d here. will sleep for %d seconds\n", getpid(), delay);
sleep(delay);
printf("child done. about to exit\n");
exit(17);
}
void parent_code(int childpid)
{
int wait_rv=0; /* return value from wait() */
wait_rv = wait(NULL);
printf("done waiting for %d. Wait returned: %d\n",
childpid, wait_rv);
}
int main()
{
int newpid;
printf("before: mypid is %d\n", getpid());
if ( (newpid = fork()) == -1 )
perror("fork");
else if ( newpid == 0 )
child_code(DELAY);
else
parent_code(newpid);
return 0;
}
如果有子进程,则终止子进程,成功返回子进程pid。结果如下图:
waitdemo2
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#define DELAY 10
void child_code(int delay)
{
printf("child %d here. will sleep for %d seconds\n", getpid(), delay);
sleep(delay);
printf("child done. about to exit\n");
exit(27);
}
void parent_code(int childpid)
{
int wait_rv;
int child_status;
int high_8, low_7, bit_7;
wait_rv = wait(&child_status);
printf("done waiting for %d. Wait returned: %d\n", childpid, wait_rv);
high_8 = child_status >> 8; /* 1111 1111 0000 0000 */
low_7 = child_status & 0x7F; /* 0000 0000 0111 1111 */
bit_7 = child_status & 0x80; /* 0000 0000 1000 0000 */
printf("status: exit=%d, sig=%d, core=%d\n", high_8, low_7, bit_7);
}
int main()
{
int newpid;
printf("before: mypid is %d\n", getpid());
if ( (newpid = fork()) == -1 )
perror("fork");
else if ( newpid == 0 )
child_code(DELAY);
else
parent_code(newpid);
}
这个比起1来就是多了一个子进程的状态区分,把状态拆分成三块,exit,sig和core。具体运行如下:
本周代码托管截图
其他(感悟、思考等,可选)
学期越到后面就越是考验前面的基础有没有打扎实,前期轻松那么后期一定会艰难,前期艰难后期总会轻松一些。
学习进度条
代码行数(新增/累积) | 博客量(新增/累积) | 学习时间(新增/累积) | 重要成长 | |
---|---|---|---|---|
目标 | 5000行 | 30篇 | 400小时 | |
第一周 | 100/100 | 2/2 | 10/10 | |
第二周 | 100/200 | 1/3 | 20/30 | |
第三周 | 80/280 | 1/4 | 15/45 | |
第五周 | 100/380 | 1/5 | 15/60 | |
第六周 | 100/480 | 1/6 | 15/75 | |
第七周 | 20/500 | 1/7 | 15/90 | |
第八周 | 0/500 | 1/8 | 15/105 | |
第九周 | 61/561 | 1/9 | 20/125 | |
第十周 | 279/840 | 1/10 | 20/145 | |
第十一周 | 419/1259 | 1/11 | 20/165 |