莫比乌斯函数筛法 & 莫比乌斯反演

时间:2022-09-10 03:11:01

模板:

int p[MAXN],pcnt=0,mu[MAXN];
bool notp[MAXN];
void shai(int n){
mu[1]=1;
for(int i=2;i<=n;++i){
if (notp[i]==0){
p[++pcnt]=i;
mu[i]=-1;
}
for (int j=1,t=p[j]*i;j<=pcnt&&t<=n;++j,t=p[j]*i){
notp[t]=1;
if (i%p[j]==0){
mu[i]=0;
break;
}else
mu[i*p[j]]=-mu[i];
}
}
}

$\mu(d)$函数的定义如下:

  (1)若莫比乌斯函数筛法 & 莫比乌斯反演,那么莫比乌斯函数筛法 & 莫比乌斯反演

  (2)若莫比乌斯函数筛法 & 莫比乌斯反演莫比乌斯函数筛法 & 莫比乌斯反演均为互异素数,那么莫比乌斯函数筛法 & 莫比乌斯反演

  (3)其它情况下莫比乌斯函数筛法 & 莫比乌斯反演

对任意正整数n有

  莫比乌斯函数筛法 & 莫比乌斯反演   (很重要!!!)

  莫比乌斯函数筛法 & 莫比乌斯反演   (有用吗 (╯°Д°)╯︵ ┻━┻,还是记一记吧)

对于莫比乌斯反演:

$$F(n) = \sum_{d|n} f(d)$$

结论:

$$f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$$

证明(真心简洁):

$$\sum_{d|n} \mu(d) F(\frac{n}{d}) = \sum_{d|n} \mu(d) \sum_{d'|{\frac{n}{d}}} f(d') = \sum_{d'|n} f(d') \sum_{d|{\frac{n}{d'}}} \mu(d) = f(n)$$