嵌入式操作系统内核原理和开发(改进型优先级调度)

时间:2021-09-01 18:01:35

【 声明:版权所有,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】


    上面的一篇博客说到了优先级调度,但是那个优先级调度算法比较极端。打个比方说,现在王先生有三个小孩,分别是老大、老二、老三。假设现在到了饭点,王先生需要给三个小孩喂饭。此时如果是时间片轮转的话,那么就是绝对公平,王先生每人一口不停地进行喂饭。如果是优先级调度,那么王先生首先自己有一个优先级考量,比如说三个小孩按照年龄顺序优先级是逐渐提高的,毕竟小孩需要更多的照顾嘛。这个时候如果需要进行喂饭的话,那么王先生需要首先伺候好最小的那个小孩老三,才会有时间照顾老二,至于老大什么时候才能得到照顾那就看造化了。


    现在,我们打算重新换一种方法。假设三个小孩的优先级分别是1、2、3,其中年龄越小优先级越高,3代表高优先级。接着,我们按照优先级给三个小孩安排时间片,分别是1、2、3。同时,这个时间片不光代表了当前可用的剩余时间,还代表了小孩此时的临时优先级。

    (1)首先王先生给老三喂饭,时间片降低1,即临时优先级为2;

    (2)接着王先生判断当前优先级最高的仍为老三,毕竟老二的优先级也没有超过老三,所以老三的时间片降1,临时优先级为1;

    (3)王先生获知当前优先级最高的为老二,老二获得时间片;

    (4)此时王先生发现三个孩子的临时优先级都一样,那么就会按照固定优先级的大小依次对老三、老二、老大进行喂饭。


    我们发现,这中间受益最大的就是老二。当然,我们可以做进一步推论,如果老王的孩子越多,那么优先级处于中间的孩子在时间片的分配上将更加均匀,响应也会更加及时,交互性也会变得很好。


    根据以上的想法,我们重新改写了优先级调度算法,修改为改进型优先级调度算法,

int find_next_thread(){
int index;
int choice = THREAD_MAX_NUMBER -1;
int value = gAllTask[choice].time_slice;

for(index = choice -1; index >= 0; index --)
{
if(value < gAllTask[index].time_slice)
{
choice = index;
value = gAllTask[index].time_slice;
}
}

if(0 == value)
choice = -1;

return choice;
}
    当然,加上原来的时间片轮转调度、通用优先级调度方法,此时就存在三种调度方法了。我们可以自己设置宏,通过宏的设置灵活选用调度算法,

#define TIME_ROUND_SCHEDULE     0#define HARD_PRIORITY_SCHEDULE  0#define SOFT_PRIORITY_SCHEDULE  1	

    这些代码都是可以在系统*存的。选用什么算法,取决于实际情况是什么样的情形。

#include <stdio.h>#include <time.h>#include <stdlib.h>#include <signal.h>#include <assert.h>#include <string.h>#include <sys/time.h>#define UINT32 unsigned         int#define STACK_LENGTH            512#define THREAD_MAX_NUMBER       10#define TIME_ROUND_SCHEDULE     0#define HARD_PRIORITY_SCHEDULE  0#define SOFT_PRIORITY_SCHEDULE  1	typedef struct _TASK_INFO{    UINT32 id;    UINT32* stack;    UINT32 size;    UINT32 context;    UINT32 priority;    UINT32 time_slice;    void (*func)();}TASK_INFO;static struct itimerval oldtv;UINT32 old   = 0;UINT32 count = 0;UINT32 task_stack[THREAD_MAX_NUMBER][STACK_LENGTH] = {0};TASK_INFO gAllTask[THREAD_MAX_NUMBER] = {0};UINT32 current_thread_id = 0;void set_timer(){        struct itimerval itv;        itv.it_interval.tv_sec = 1;        itv.it_interval.tv_usec = 0;        itv.it_value.tv_sec = 1;        itv.it_value.tv_usec = 0;        setitimer(ITIMER_REAL, &itv, &oldtv);}void swap(UINT32* prev, UINT32* next){    __asm("push %%eax\n\t"          "push %%ebx\n\t"          "push %%ecx\n\t"          "push %%edx\n\t"          "push %%esi\n\t"          "push %%edi\n\t"          "push %%ebp\n\t"          "push %%esp\n\t"          "lea 0x8(%%ebp), %%eax\n\t"          "mov (%%eax), %%eax\n\t"          "mov %%esp, (%%eax)\n\t"          "lea 0xc(%%ebp), %%eax\n\t"          "mov (%%eax), %%eax\n\t"          "mov (%%eax), %%esp\n\t"          "pop %%esp\n\t"          "pop %%ebp\n\t"          "pop %%edi\n\t"          "pop %%esi\n\t"          "pop %%edx\n\t"          "pop %%ecx\n\t"          "pop %%ebx\n\t"          "pop %%eax\n\t"          ::);}void hello(){        int temp = 0;        while(1) {            printf("id = %d, temp = %d, count = %d in thread!\n",current_thread_id,  temp ++, count ++);            swap(&gAllTask[current_thread_id].context, &old);            printf("id = %d, temp = %d, count = %d in thread!\n",current_thread_id,  temp ++, count ++);            swap(&gAllTask[current_thread_id].context, &old);        }}#if HARD_PRIORITY_SCHEDULEint find_next_thread(){    int index;    for(index = THREAD_MAX_NUMBER -1; index >=0; index --)    {        if(0 != gAllTask[index].time_slice)            break;    }    return index;      }#endif#if SOFT_PRIORITY_SCHEDULEint find_next_thread(){    int index;    int choice = THREAD_MAX_NUMBER -1;    int value = gAllTask[choice].time_slice;    for(index = choice -1; index >= 0; index --)    {        if(value < gAllTask[index].time_slice)        {            choice = index;            value = gAllTask[index].time_slice;        }    }    if(0 == value)        choice = -1;    return choice;      }#endifvoid reset_time_slice (){    int index;    for(index = 0; index < THREAD_MAX_NUMBER; index++)        gAllTask[index].time_slice = gAllTask[index].priority + 1;}void task_init(int index){        UINT32 unit = gAllTask[index].size;        UINT32* pData = gAllTask[index].stack;        memset((void*)pData,(int) 0, unit * sizeof(UINT32));        pData[unit -1] = (UINT32) gAllTask[index].func;        pData[unit -2] = 0;        pData[unit -3] = 0;        pData[unit -4] = 0;        pData[unit -5] = 0;        pData[unit -6] = 0;        pData[unit -7] = 0;        pData[unit -8] = 0;        pData[unit -9] = 0;        pData[unit -10] = (UINT32) &pData[unit - 9];        gAllTask[index].context = (UINT32) &pData[unit -10];}#if TIME_ROUND_SCHEDULEvoid signal_handler(int m){        current_thread_id = current_thread_id % THREAD_MAX_NUMBER;        swap(&old, &gAllTask[current_thread_id].context);        current_thread_id ++;}#elsevoid signal_handler(int m){        int index;start:        index = find_next_thread();        if(-1 == index)        {            reset_time_slice();            goto start;        }        gAllTask[index].time_slice --;        current_thread_id = index;        swap(&old, &gAllTask[current_thread_id].context);}#endifvoid set_all_task()	{        int index;        memset(gAllTask, 0, sizeof(gAllTask));        for(index = 0; index < THREAD_MAX_NUMBER; index ++)        {            gAllTask[index].id = index;            gAllTask[index].stack = task_stack[index];            gAllTask[index].size = STACK_LENGTH;            gAllTask[index].context = 0;            gAllTask[index].func = hello;            gAllTask[index].priority = index;            gAllTask[index].time_slice = index + 1;            task_init(index);        }}int main(){        char val;        set_all_task();        set_timer();        signal(SIGALRM, signal_handler);        while(1)        {            scanf("%c", &val);        }        exit(0);        return 1;}