回归算法之岭回归

时间:2022-03-27 16:50:23

1. 岭回归

  • 首先,说一下岭回归名字的由来, w^=(XTX+λI)1XTy ,其中,I 是单位矩阵(对角线全是1,像”山岭“), λ 是岭系数(顾名思义…改变其数值可以改变单位矩阵对角线的值)
  • 其次,岭回归是基于最小二乘法 w^=(XTX)1XTy , 最小二乘法中有时候 XTX 可能不是满秩矩阵,也就是此时行列式为零,无法求逆 ( A1=1|A|A 其中 A 是伴随矩阵)

2. 公式

最小二乘法 w^=(XTX)1XTy
岭回归公式 w^=(XTX+λI)1XTy

3. 伪代码

输入XY 以及lambda系数
计算demo = XTX+lambda*I
判断是否为零
计算 ws = demo.I * xTy

4.代码


# coding:utf-8

import pylab as pl
from numpy import *
from datetime import datetime

def loadData(fileName):
labelMat = []
dataMat = []
with open(fileName) as txtFile:
for line in txtFile.readlines():
labelMat.append(map(float, line.split())[-1])
dataMat.append(map(float, line.split())[0:-1])
return dataMat, labelMat # 4177*8

# 计算ws #(xTx+IMat).I * xTy
def ridge(xArr, yArr, lam=0.2):
n = shape(xArr)[-1]
IMat = eye(n)
xTx = xArr.T * xArr
demo = xTx + IMat * lam
if linalg.det(demo) is 0:
print "Warning !!!"
return
ws = demo.I * (xArr.T * yArr)
# print ws
return ws

# 进行30次循环 每次的系数指数级改变
# 数据进行标准化 y-ymean,x=(x-xmean)/xvar
def rightTest(xArr, yArr, loopNum=30):
xMat = mat(xArr)
yMat = mat(yArr).T
yMat -= mean(yMat, 0)
xMat = (xMat - mean(xMat, 0)) / var(xMat, 0)
weight = zeros((loopNum, shape(xMat)[1]))
for i in range(loopNum):
weight[i, :] = ridge(xMat, yMat, exp(i - 10)).T
return weight

# 打印图像
def outPic(point):
fig = pl.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(point)
pl.show()

if __name__ == '__main__':
start = datetime.now()
data, label = loadData("abalone.txt")
loopNum = 30
w = rightTest(data, label, loopNum)
# print w
outPic(w)
print "耗时为:", datetime.now() - start

5. 打印图像 以及 分析

回归算法之岭回归
(横轴是循环次数就是相关岭系数 纵轴是回归系数) 从图像中可以看出,在这八个系数中有两个距离0比较远,所以数据的主要预测就可以依靠这两个系数

附 数据集

'''
1 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15
1 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7
-1 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 9
1 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10
0 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7
0 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12 8
-1 0.53 0.415 0.15 0.7775 0.237 0.1415 0.33 20
-1 0.545 0.425 0.125 0.768 0.294 0.1495 0.26 16
1 0.475 0.37 0.125 0.5095 0.2165 0.1125 0.165 9
-1 0.55 0.44 0.15 0.8945 0.3145 0.151 0.32 19
-1 0.525 0.38 0.14 0.6065 0.194 0.1475 0.21 14
1 0.43 0.35 0.11 0.406 0.1675 0.081 0.135 10
1 0.49 0.38 0.135 0.5415 0.2175 0.095 0.19 11
-1 0.535 0.405 0.145 0.6845 0.2725 0.171 0.205 10
-1 0.47 0.355 0.1 0.4755 0.1675 0.0805 0.185 10
1 0.5 0.4 0.13 0.6645 0.258 0.133 0.24 12
0 0.355 0.28 0.085 0.2905 0.095 0.0395 0.115 7
-1 0.44 0.34 0.1 0.451 0.188 0.087 0.13 10
1 0.365 0.295 0.08 0.2555 0.097 0.043 0.1 7
.....还有4000行
'''