HDU1401 BFS

时间:2022-12-29 10:55:29

Solitaire

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4368    Accepted Submission(s): 1324

Problem Description
Solitaire is a game played on a chessboard 8x8. The rows and columns of the chessboard are numbered from 1 to 8, from the top to the bottom and from left to right respectively.

There are four identical pieces on the board. In one move it is allowed to:

> move a piece to an empty neighboring field (up, down, left or right),

> jump over one neighboring piece to an empty field (up, down, left or right).

HDU1401 BFS

There are 4 moves allowed for each piece in the configuration shown above. As an example let's consider a piece placed in the row 4, column 4. It can be moved one row up, two rows down, one column left or two columns right.

Write a program that:

> reads two chessboard configurations from the standard input,

> verifies whether the second one is reachable from the first one in at most 8 moves,

> writes the result to the standard output.

 
Input
Each of two input lines contains 8 integers a1, a2, ..., a8 separated by single spaces and describes one configuration of pieces on the chessboard. Integers a2j-1 and a2j (1 <= j <= 4) describe the position of one piece - the row number and the column number respectively. Process to the end of file.
 
Output
The output should contain one word for each test case - YES if a configuration described in the second input line is reachable from the configuration described in the first input line in at most 8 moves, or one word NO otherwise.
 
Sample Input
4 4 4 5 5 4 6 5
2 4 3 3 3 6 4 6
 
Sample Output
YES
 
Source
题意:
问在8步之内能否从前一个状态到后一个状态,棋子只能上下左右走或者如图中的方式走(跳过相邻的一个棋子)。
代码:
 /*
用bool开一个8维数组vis记录状态是否走过,很容易超内存,尽量少开数组减少内存。
*/
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
bool vis[][][][][][][][];
bool mp[][];
int dir[][]={,,,,-,,,-};
struct Lu
{
int x[],y[],cnt;
}L3;
bool chak(Lu L)
{
for(int i=;i<;i++){
if(!mp[L.x[i]][L.y[i]])
return ;
}
return ;
}
bool nice(Lu L)
{
for(int i=;i<;i++){
if(L.x[i]>||L.x[i]<||L.y[i]>||L.y[i]<)
return ;
}
if(vis[L.x[]][L.y[]][L.x[]][L.y[]][L.x[]][L.y[]][L.x[]][L.y[]])
return ;
return ;
}
bool empt(Lu L,int k)
{
for(int i=;i<;i++){
if(i==k) continue;
if(L.x[k]==L.x[i]&&L.y[k]==L.y[i])
return ;
}
return ;
}
bool bfs()
{
Lu L2;
queue<Lu>q;
q.push(L3);
while(!q.empty()){
L2=q.front();
q.pop();
if(chak(L2)) return ;
if(L2.cnt>=) continue;
for(int i=;i<;i++){
for(int j=;j<;j++){
L3=L2;
L3.x[i]=L2.x[i]+dir[j][];
L3.y[i]=L2.y[i]+dir[j][];
if(!nice(L3)) continue;
if(empt(L3,i)){
vis[L3.x[]][L3.y[]][L3.x[]][L3.y[]][L3.x[]][L3.y[]][L3.x[]][L3.y[]]=true;
L3.cnt++;
q.push(L3);
}
else{
L3.x[i]=L3.x[i]+dir[j][];
L3.y[i]=L3.y[i]+dir[j][];
if(!nice(L3)) continue;
if(empt(L3,i)){
vis[L3.x[]][L3.y[]][L3.x[]][L3.y[]][L3.x[]][L3.y[]][L3.x[]][L3.y[]]=true;
L3.cnt++;
q.push(L3);
}
}
}
}
}
return ;
}
int main()
{
int x,y;
while(cin>>x>>y){
x--;y--;
memset(vis,false,sizeof(vis));
memset(mp,false,sizeof(mp));
L3.x[]=x;L3.y[]=y;
for(int i=;i<;i++){
cin>>x>>y;
x--;y--;
L3.x[i]=x;L3.y[i]=y;
}
vis[L3.x[]][L3.y[]][L3.x[]][L3.y[]][L3.x[]][L3.y[]][L3.x[]][L3.y[]]=true;
for(int i=;i<;i++){
cin>>x>>y;
x--;y--;
mp[x][y]=true;
}
L3.cnt=;
int flag=bfs();
if(flag) cout<<"YES\n";
else cout<<"NO\n";
}
return ;
}