题目大意:给出1*1, 2*2,3 *3, 4*4, 5*5, 6*6的箱子的个数,如今有若干个6*6的箱子,问最少用多少个箱子能够将给定的箱子都装进去。
解题思路:对于6 * 6的箱子,每一个都要耗费一个箱子。
对于5 * 5的箱子, 装完这个后还能再装11个1 * 1.
对于 4 * 4的箱子,装完这个后还能装5个2 * 2,然后2 * 2 的不够能够用1 * 1 的补足。
对于3 * 3 的箱子,情况有3:
1个3 * 3的箱子, 5 个 2 * 2 的箱子, 7个 1 * 1;
同上诉格式:2 3 6
3 1 5
对于须要2的,不足的话就用1的.
代码:
#include <stdio.h> const int N = 6;
int packets[N];
//补足2*2的空缺
void need () { if (packets[1] < 0) { packets[0] += packets[1] * 4;
packets[1] = 0;
}
}
//推断3*3的特殊的情况
void judge (int a, int b) { packets[1] -= a;
packets[0] -= b;
need();
} int solve () { int sum = packets[5];
int temp;
for (int i = N - 2; i >= 1; i--) { if (i == 4) { sum += packets[i];
packets[0] -= 11 * packets[i]; } else if (i == 3) { sum += packets[i];
packets[1] -= packets[i] * 5;
need(); } else if (i == 2) { sum += packets[i] / 4;
packets[i] %= 4;
if (packets[i] == 3) { sum++;
judge(1,5);
} else if (packets[i] == 2) { sum++;
judge(3,6);
} else if (packets[i] == 1) { sum++;
judge(5,7);
}
} else { temp = packets[1] * 4;
if (packets[0] > 0)
temp += packets[0];
sum += (temp + 35)/ 36;
}
}
return sum;
} int main () { int count;
while (1) { count = 0;
for (int i = 0; i < N; i++) { scanf ("%d", &packets[i]);
count += packets[i];
}
if (!count)
break; printf ("%d\n", solve());
}
return 0;
}