根据另一列中的值汇总一列中的数据

时间:2022-02-24 07:51:01

I know there is an easy way to do this...but, I can't figure it out.

我知道有一种简单的方法可以做到这一点......但是,我无法弄明白。

I have a dataframe in my R script that looks something like this:

我的R脚本中有一个数据帧,如下所示:

A      B    C
1.2    4    8
2.3    4    9
2.3    6    0
1.2    3    3
3.4    2    1 
1.2    5    1

Note that A, B, and C are column names. And I'm trying to get variables like this:

请注意,A,B和C是列名。而我正试图得到这样的变量:

sum1 <- [the sum of all B values such that A is 1.2]
num1 <- [the number of times A is 1.2]

Any easy way to do this? I basically want to end up with a data frame that looks like this:

有什么简单的方法吗?我基本上想要得到一个如下所示的数据框:

    A     num     totalB
   1.2    3       12
   etc    etc     etc

Where "num" is the number of times that particular A value appeared, and "totalB" is the sum of the B values given the A value.

其中“num”是特定A值出现的次数,“totalB”是给定A值的B值之和。

4 个解决方案

#1


14  

I'd use aggregate to get the two aggregates and then merge them into a single data frame:

我使用aggregate来获取两个聚合,然后将它们合并到一个数据框中:

> df
    A B C
1 1.2 4 8
2 2.3 4 9
3 2.3 6 0
4 1.2 3 3
5 3.4 2 1
6 1.2 5 1

> num <- aggregate(B~A,df,length)
> names(num)[2] <- 'num'

> totalB <- aggregate(B~A,df,sum)
> names(totalB)[2] <- 'totalB'

> merge(num,totalB)
    A num totalB
1 1.2   3     12
2 2.3   2     10
3 3.4   1      2

#2


4  

Here is a solution using the plyr package

这是使用plyr包的解决方案

plyr::ddply(df, .(A), summarize, num = length(A), totalB = sum(B))

#3


4  

Here is a solution using data.table for memory and time efficiency

这是一个使用data.table的内存和时间效率的解决方案

library(data.table)
DT <- as.data.table(df)
DT[, list(totalB = sum(B), num = .N), by = A]

To subset only rows where C==1 (as per the comment to @aix answer)

仅对C == 1的行进行子集(根据@aix答案的注释)

DT[C==1, list(totalB = sum(B), num = .N), by = A]

#4


1  

In dplyr:

在dplyr中:

library(tidyverse)
A <- c(1.2, 2.3, 2.3, 1.2, 3.4, 1.2)
B <- c(4, 4, 6, 3, 2, 5)
C <- c(8, 9, 0, 3, 1, 1)

df <- data_frame(A, B, C)

df %>%
    group_by(A) %>% 
    summarise(num = n(),
              totalB = sum(B))

#1


14  

I'd use aggregate to get the two aggregates and then merge them into a single data frame:

我使用aggregate来获取两个聚合,然后将它们合并到一个数据框中:

> df
    A B C
1 1.2 4 8
2 2.3 4 9
3 2.3 6 0
4 1.2 3 3
5 3.4 2 1
6 1.2 5 1

> num <- aggregate(B~A,df,length)
> names(num)[2] <- 'num'

> totalB <- aggregate(B~A,df,sum)
> names(totalB)[2] <- 'totalB'

> merge(num,totalB)
    A num totalB
1 1.2   3     12
2 2.3   2     10
3 3.4   1      2

#2


4  

Here is a solution using the plyr package

这是使用plyr包的解决方案

plyr::ddply(df, .(A), summarize, num = length(A), totalB = sum(B))

#3


4  

Here is a solution using data.table for memory and time efficiency

这是一个使用data.table的内存和时间效率的解决方案

library(data.table)
DT <- as.data.table(df)
DT[, list(totalB = sum(B), num = .N), by = A]

To subset only rows where C==1 (as per the comment to @aix answer)

仅对C == 1的行进行子集(根据@aix答案的注释)

DT[C==1, list(totalB = sum(B), num = .N), by = A]

#4


1  

In dplyr:

在dplyr中:

library(tidyverse)
A <- c(1.2, 2.3, 2.3, 1.2, 3.4, 1.2)
B <- c(4, 4, 6, 3, 2, 5)
C <- c(8, 9, 0, 3, 1, 1)

df <- data_frame(A, B, C)

df %>%
    group_by(A) %>% 
    summarise(num = n(),
              totalB = sum(B))