I have a dataset that contains in some columns two values that I have to change to NA.
我有一个数据集,它在某些列中包含两个值,我必须将它们改为NA。
'#DIV/0' and '' (nothing)
“# DIV / 0”和“(无)
I solved this problem using a 'for' loop but I would like to know if there is another way, like using 'apply' and what is the faster method.
我用for循环解决了这个问题,但是我想知道是否有其他的方法,比如使用apply和更快的方法。
My code:
我的代码:
train <- read.csv('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv',stringsAsFactors = F)
test <- read.csv('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv', stringsAsFactors = F)
train2 <- train
for(x in 1:length(train2)){
train2[train2[,x] %in% c('','#DIV/0'),x] <- NA
}
test2 <- test
for(x in 1:length(test2)){
test2[test2[,x] %in% c('','#DIV/0'),x] <- NA
}
1 个解决方案
#1
3
We can use na.strings
argument in the read.csv
我们可以利用na。csv中的字符串参数
train <- read.csv('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv',
na.strings=c('#DIV/0', '', 'NA') ,stringsAsFactors = F)
test <- read.csv('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv',
na.strings= c('#DIV/0', '', 'NA'),stringsAsFactors = F)
Just checking
只是检查
sum(train=='#DIV/0', na.rm=TRUE)
#[1] 0
sum(test=='#DIV/0', na.rm=TRUE)
#[1] 0
sum(test=='', na.rm=TRUE)
#[1] 0
sum(train=='', na.rm=TRUE)
#[1] 0
The NA
values
NA的值
sum(is.na(train))
#[1] 1921600
sum(is.na(test))
#[1] 2000
#1
3
We can use na.strings
argument in the read.csv
我们可以利用na。csv中的字符串参数
train <- read.csv('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv',
na.strings=c('#DIV/0', '', 'NA') ,stringsAsFactors = F)
test <- read.csv('https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv',
na.strings= c('#DIV/0', '', 'NA'),stringsAsFactors = F)
Just checking
只是检查
sum(train=='#DIV/0', na.rm=TRUE)
#[1] 0
sum(test=='#DIV/0', na.rm=TRUE)
#[1] 0
sum(test=='', na.rm=TRUE)
#[1] 0
sum(train=='', na.rm=TRUE)
#[1] 0
The NA
values
NA的值
sum(is.na(train))
#[1] 1921600
sum(is.na(test))
#[1] 2000