I am trying to convert a dataframe to long form.
我试着把一个dataframe转换成long格式。
The dataframe I am starting with:
我开始的dataframe:
df = pd.DataFrame([['a', 'b'],
['d', 'e'],
['f', 'g', 'h'],
['q', 'r', 'e', 't']])
df = df.rename(columns={0: "Key"})
Key 1 2 3
0 a b None None
1 d e None None
2 f g h None
3 q r e t
The number of columns is not specified, there may be more than 4. There should be a new row for each value after the key
没有指定列数,可能有4个以上。在键之后,每个值应该有一个新的行。
This gets what I need, however, it seems there should be a way to do this without having to drop null values:
这就得到了我所需要的,然而,似乎应该有一种方法可以做到这一点,而不必放弃null值:
new_df = pd.melt(df, id_vars=['Key'])[['Key', 'value']]
new_df = new_df.dropna()
Key value
0 a b
1 d e
2 f g
3 q r
6 f h
7 q e
11 q t
3 个解决方案
#1
5
Option 1
You should be able to do this with set_index
+ stack
:
选项1您应该能够使用set_index +堆栈来实现这一点:
df.set_index('Key').stack().reset_index(level=0, name='value').reset_index(drop=True)
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
If you don't want to keep resetting the index, then use an intermediate variable and create a new DataFrame:
如果您不想继续重新设置索引,那么使用中间变量并创建一个新的DataFrame:
v = df.set_index('Key').stack()
pd.DataFrame({'Key' : v.index.get_level_values(0), 'value' : v.values})
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
The essence here is that stack
automatically gets rid of NaN
s by default (you can disable that by setting dropna=False
).
这里的本质是,默认情况下栈会自动清除NaNs(您可以通过设置dropna=False来禁用它)。
Option 2
More performance with np.repeat
and numpy's version of pd.DataFrame.stack
:
选项2更多的性能与np。重复和numpy的版本的pd.DataFrame.stack:
i = df.pop('Key').values
j = df.values.ravel()
pd.DataFrame({'Key' : v.repeat(df.count(axis=1)), 'value' : j[pd.notnull(j)]
})
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
#2
5
By using melt
(I do not think dropna create more 'trouble' here)
使用熔体(我不认为dropna会在这里制造更多的麻烦)
df.melt('Key').dropna().drop('variable',1)
Out[809]:
Key value
0 a b
1 d e
2 f g
3 q r
6 f h
7 q s
11 q t
And if without dropna
如果没有dropna
s=df.fillna('').set_index('Key').sum(1).apply(list)
pd.DataFrame({'Key': s.reindex(s.index.repeat(s.str.len())).index,'value':s.sum()})
Out[862]:
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
#3
2
With a comprehension
This assumes the key is the first element of the row.
有了理解,这就假定键是行的第一个元素。
pd.DataFrame(
[[k, v] for k, *r in df.values for v in r if pd.notna(v)],
columns=['Key', 'value']
)
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
#1
5
Option 1
You should be able to do this with set_index
+ stack
:
选项1您应该能够使用set_index +堆栈来实现这一点:
df.set_index('Key').stack().reset_index(level=0, name='value').reset_index(drop=True)
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
If you don't want to keep resetting the index, then use an intermediate variable and create a new DataFrame:
如果您不想继续重新设置索引,那么使用中间变量并创建一个新的DataFrame:
v = df.set_index('Key').stack()
pd.DataFrame({'Key' : v.index.get_level_values(0), 'value' : v.values})
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
The essence here is that stack
automatically gets rid of NaN
s by default (you can disable that by setting dropna=False
).
这里的本质是,默认情况下栈会自动清除NaNs(您可以通过设置dropna=False来禁用它)。
Option 2
More performance with np.repeat
and numpy's version of pd.DataFrame.stack
:
选项2更多的性能与np。重复和numpy的版本的pd.DataFrame.stack:
i = df.pop('Key').values
j = df.values.ravel()
pd.DataFrame({'Key' : v.repeat(df.count(axis=1)), 'value' : j[pd.notnull(j)]
})
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
#2
5
By using melt
(I do not think dropna create more 'trouble' here)
使用熔体(我不认为dropna会在这里制造更多的麻烦)
df.melt('Key').dropna().drop('variable',1)
Out[809]:
Key value
0 a b
1 d e
2 f g
3 q r
6 f h
7 q s
11 q t
And if without dropna
如果没有dropna
s=df.fillna('').set_index('Key').sum(1).apply(list)
pd.DataFrame({'Key': s.reindex(s.index.repeat(s.str.len())).index,'value':s.sum()})
Out[862]:
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t
#3
2
With a comprehension
This assumes the key is the first element of the row.
有了理解,这就假定键是行的第一个元素。
pd.DataFrame(
[[k, v] for k, *r in df.values for v in r if pd.notna(v)],
columns=['Key', 'value']
)
Key value
0 a b
1 d e
2 f g
3 f h
4 q r
5 q s
6 q t