算法题目---二叉搜索树与双向链表

时间:2022-09-14 19:03:17

输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。


struct BinaryTreeNode

{
    int m_nValue;
    BinaryTreeNode* m_pLeft;
    BinaryTreeNode* m_pRight;
};

void ConvertNode(BinaryTreeNode* pNode,BinaryTreeNode** pLastNodeInList)
{
     if(pNode == NULL)
        return;
    BinaryTreeNode* pCurrent = pNode;
    
    if(pCurrent->m_pLeft != NULL)
        ConvertNode(pCurrent->m_pLeft,pLastNodeInList);
    
    pCurrent->m_pLeft = *pLastNodeInList;
    
    if(*pLastNodeInList != NULL)
        (*pLastNodeInList)->m_pRight = pCurrent;

    *pLastNodeInList = pCurrent;
    
    if(pCurrent->m_pRight != NULL)
         ConvertNode(pCurrent->m_pRight,pLastNodeInList);

                                                              
}

BinaryTreeNode* Convert(BinaryTreeNode* pRootOfTree)
{
    BinaryTreeNode* pLastNodeInList = NULL;
    ConvertNode(pRootOfTree,&pLastNodeInList);

    BinaryTreeNode *pHeadOfList = pLastNodeInList;
    while(pHeadOfList != NULL && pHeadOfList->m_pLeft != NULL)
        pHeadOfList = pHeadOfList->m_pLeft;
    
    return pHeadOfList;    
}

void PrintDoubleLinkedList(BinaryTreeNode* pHeadOfList)
{
    BinaryTreeNode* pNode = pHeadOfList;

    printf("The nodes from left to right are:\n");
    while(pNode != NULL)
    {
        printf("%d\t", pNode->m_nValue);

        if(pNode->m_pRight == NULL)
            break;
        pNode = pNode->m_pRight;
    }

    printf("\nThe nodes from right to left are:\n");
    while(pNode != NULL)
    {
        printf("%d\t", pNode->m_nValue);

        if(pNode->m_pLeft == NULL)
            break;
        pNode = pNode->m_pLeft;
    }

    printf("\n");
}


void DestroyList(BinaryTreeNode* pHeadOfList)
{
    BinaryTreeNode* pNode = pHeadOfList;
    while(pNode != NULL)
    {
        BinaryTreeNode* pNext = pNode->m_pRight;

        delete pNode;
        pNode = pNext;
    }
}

void PrintTreeNode(BinaryTreeNode* pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->m_nValue);

        if(pNode->m_pLeft != NULL)
            printf("value of its left child is: %d.\n", pNode->m_pLeft->m_nValue);
        else
            printf("left child is null.\n");

        if(pNode->m_pRight != NULL)
            printf("value of its right child is: %d.\n", pNode->m_pRight->m_nValue);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

    printf("\n");
}

void PrintTree(BinaryTreeNode* pRoot)
{
    PrintTreeNode(pRoot);

    if(pRoot != NULL)
    {
        if(pRoot->m_pLeft != NULL)
            PrintTree(pRoot->m_pLeft);

        if(pRoot->m_pRight != NULL)
            PrintTree(pRoot->m_pRight);
    }
}

void Test(char* testName, BinaryTreeNode* pRootOfTree)
{
    if(testName != NULL)
        printf("%s begins:\n", testName);

    PrintTree(pRootOfTree);

    BinaryTreeNode* pHeadOfList = Convert(pRootOfTree);

    PrintDoubleLinkedList(pHeadOfList);
}

BinaryTreeNode* CreateBinaryTreeNode(int value)
{
    BinaryTreeNode* pNode = new BinaryTreeNode();
    pNode->m_nValue = value;
    pNode->m_pLeft = NULL;
    pNode->m_pRight = NULL;

    return pNode;
}

void ConnectTreeNodes(BinaryTreeNode* pParent, BinaryTreeNode* pLeft, BinaryTreeNode* pRight)
{
    if(pParent != NULL)
    {
        pParent->m_pLeft = pLeft;
        pParent->m_pRight = pRight;
    }
}

void Test1()
{
    BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
    BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
    BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
    BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
    BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
    BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
    BinaryTreeNode* pNode16 = CreateBinaryTreeNode(16);

    ConnectTreeNodes(pNode10, pNode6, pNode14);
    ConnectTreeNodes(pNode6, pNode4, pNode8);
    ConnectTreeNodes(pNode14, pNode12, pNode16);

    Test("Test1", pNode10);

    DestroyList(pNode4);
}

void Test2()
{
    BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
    BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
    BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
    BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
    BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);

    ConnectTreeNodes(pNode5, pNode4, NULL);
    ConnectTreeNodes(pNode4, pNode3, NULL);
    ConnectTreeNodes(pNode3, pNode2, NULL);
    ConnectTreeNodes(pNode2, pNode1, NULL);

    Test("Test2", pNode5);

    DestroyList(pNode1);
}

void Test3()
{
    BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
    BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
    BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
    BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);

    ConnectTreeNodes(pNode1, NULL, pNode2);
    ConnectTreeNodes(pNode2, NULL, pNode3);
    ConnectTreeNodes(pNode3, NULL, pNode4);
    ConnectTreeNodes(pNode4, NULL, pNode5);

    Test("Test3", pNode1);

    DestroyList(pNode1);
}

void Test4()
{
    BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    Test("Test4", pNode1);

    DestroyList(pNode1);
}

void Test5()
{
    Test("Test5", NULL);
}

int main()
{
    Test1();
    Test2();
    Test3();
    Test4();
    Test5();

    return 0;
}