Count Pairs
You are given a prime number pp, nn integers a1,a2,…,ana1,a2,…,an, and an integer kk.
Find the number of pairs of indexes (i,j)(i,j) (1≤i<j≤n1≤i<j≤n) for which (ai+aj)(a2i+a2j)≡kmodp(ai+aj)(ai2+aj2)≡kmodp.
Input
The first line contains integers n,p,kn,p,k (2≤n≤3⋅1052≤n≤3⋅105, 2≤p≤1092≤p≤109, 0≤k≤p−10≤k≤p−1). ppis guaranteed to be prime.
The second line contains nn integers a1,a2,…,ana1,a2,…,an (0≤ai≤p−10≤ai≤p−1). It is guaranteed that all elements are different.
Output
Output a single integer — answer to the problem.
Examples
3 3 0
0 1 2
1
6 7 2
1 2 3 4 5 6
3
Note
In the first example:
(0+1)(02+12)=1≡1mod3(0+1)(02+12)=1≡1mod3.
(0+2)(02+22)=8≡2mod3(0+2)(02+22)=8≡2mod3.
(1+2)(12+22)=15≡0mod3(1+2)(12+22)=15≡0mod3.
So only 11 pair satisfies the condition.
In the second example, there are 33 such pairs: (1,5)(1,5), (2,3)(2,3), (4,6)(4,6).
题意:
找出有几组数对满足i<j,且(ai+aj)(ai^2+aj^2)≡k mod p
思路:
如果两两找O(n^2)肯定超时,所以想到需要让i与j分离,即i与j分列等式两边,这样只需扫一遍。
两边同乘(ai-aj),制造平方差,整理后得(ai^4-aj^4)==k(ai-aj),即ai^4-k*ai==aj^4-k*aj
排序后找相同对即可。
#include<bits/stdc++.h>
#define MAX 300005
using namespace std;
typedef long long ll; ll a[MAX]; int main()
{
int t,m,i,j;
ll n,p,k;
scanf("%I64d%I64d%I64d",&n,&p,&k);
for(i=;i<=n;i++){
scanf("%I64d",&a[i]);
a[i]=(a[i]*a[i]%p*a[i]%p*a[i]%p-k*a[i]%p+p)%p;
}
sort(a+,a+n+);
ll c=,ans=;
for(i=;i<=n;i++){
if(a[i-]==a[i]){
c++;
ans+=c;
}
else c=;
}
printf("%I64d\n",ans);
return ;
}