文件名称:2022年五一杯C题数学建模
文件大小:291KB
文件格式:DOCX
更新时间:2022-08-30 17:30:18
数学建模
本文针对火灾报警系统问题,建立熵权-topsis 逻辑回归等数学模型,旨在通过所建模型来选取可靠的探测器、提高报警准确率及改进各辖区综合管理水平,从而减少我国火灾事故。 针对问题一,首先根据地址、机号和回路,确定真实火灾数为418起。接着根据题目要求,基于可靠性和故障率两个指标建立综合评价模型。由于可靠性为效益型指标,而故障率为成本型指标,故将故障率通过数学公式转换为效益型指标,即完善率。指标确定后,运用熵权法确定各指标权重,最后利用topsis法构建各类型部件评价模型,对16种部件进行综合评价,帮助*选择最可靠的5种火灾探测器类型,分别为光束感烟、手动报警按钮、智能光电探头、点型感温探测器、线性光束感烟。 针对问题二,建立基于logistic回归的区域报警部件类型智能研判模型。本文选择故障次数、消防大队及探测器类型3个变量作为自变量,误报与否作为因变量,将消防大队和探测器类型两个无序分类变量变为虚拟变量,利用logistic 回归模型预测辖区内某类型部件发出报警信息正确的概率,经检验模型的真实性为 。经检验结果有所偏差,故进行模型优化用woe值代替原值计算,使得结果更加真实可靠。