基于crf的中文命名实体识别完整代码(含训练数据)

时间:2022-06-18 16:55:26
【文件属性】:

文件名称:基于crf的中文命名实体识别完整代码(含训练数据)

文件大小:613KB

文件格式:TAR

更新时间:2022-06-18 16:55:26

NER NLP CRF 源码 训练数据

# 中文命名实体识别 基于条件随机场(Conditional Random Field, CRF)的NER模型 ## 数据集 数据集用的是论文ACL 2018[Chinese NER using Lattice LSTM](https://github.com/jiesutd/LatticeLSTM)中收集的简历数据,数据的格式如下,它的每一行由一个字及其对应的标注组成,标注集采用BIOES,句子之间用一个空行隔开。 ``` 美 B-LOC 国 E-LOC 的 O 华 B-PER 莱 I-PER 士 E-PER 我 O 跟 O 他 O 谈 O 笑 O 风 O 生 O ``` 该数据集就位于项目目录下的`data`文件夹里。 ## 运行结果 具体的输出可以查看`output.txt`文件。 ## 环境 首先安装依赖项: pip3 install -r requirement.txt 安装完毕之后,直接使用 python3 main.py > output.txt 即可训练、评估以及测试模型,评估模型将会打印出模型的精确率、召回率、F1分数值以及混淆矩阵


网友评论