文件名称:沥青生产过程中软化点的SVR预测 (2011年)
文件大小:5.48MB
文件格式:PDF
更新时间:2024-05-14 01:14:38
自然科学 论文
根据30组不同电阻和温度下的沥青软化点的实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,并结合留一交叉验证(LOOCV)法对沥青软化点进行了建模和预测研究,将其预测结果与多元线性回归(MLR)模型的计算结果进行了比较。SVR-LOOCV预测的最大误差为2.1 ℃, 远比MLR模型计算的最大误差7.9 ℃要小得多。统计结果表明:基于SVR-LOOCV预测结果的均方根误差(RMSE=0.75 ℃)、平均绝对误差(MAE=0.32 ℃)和平均绝对百分误差(MAPE=0.28%)相应也比