文件名称:论文研究-基于CP-CNN的中文短文本分类研究.pdf
文件大小:983KB
文件格式:PDF
更新时间:2022-08-11 15:39:08
短文本,分类,卷积神经网络
短文本具有长度短、特征稀疏以及上下文依赖强等特点,传统方法对其直接进行分类精度有限。针对此问题,提出了一种结合字符和词的双输入卷积神经网络模型CP-CNN。该模型通过加入一种用拼音序列表征字符级输入的方法,构建字符级和词级的双输入矩阵,并在采样层使用k-max采样方法,增强模型特征的表达能力。利用豆瓣电影评论数据集对该模型进行识别精度评估,实验结果表明,与传统分类模型和标准卷积神经网络模型相比,该模型可有效提高短文本分类效果。