文件名称:基于商品属性隐性评分的协同过滤算法研究 (2006年)
文件大小:275KB
文件格式:PDF
更新时间:2024-06-02 04:41:36
工程技术 论文
在分析目前电子商务推荐系统及算法存在问题的基础上,提出了一种准确的、实时的、基于Web日志的Internet电子商务推荐算法。基于客户浏览行为,设计了CGA(Customer―Good Attribute)模型,综合考虑客户浏览路径和时间、商品属性及其在网页中的分布等因素,研究了客户对商品属性的隐性评分函数,给出了算例说明,讨论了基于商品属性的协作过滤算法。该算法已成功应用于电子商务智能模拟系统中。