文件名称:算法设计与分析基础 习题参考答案
文件大小:1.06MB
文件格式:DOC
更新时间:2011-11-21 04:17:18
算法设计与分析基础 习题参考答案
习题1.1 5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. Hint: 根据除法的定义不难证明: 如果d整除u和v, 那么d一定能整除u±v; 如果d整除u,那么d也能够整除u的任何整数倍ku. 对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。 数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。故gcd(m,n)=gcd(n,r)