2.1 红⿊树的结构
三叉链结构,对比AVL数节点的定义,把平衡因子替换成节点颜色,采用枚举的方式:
// 枚举值表⽰颜⾊
enum Colour
{
RED,
BLACK
};
// 这⾥我们默认按key/value结构实现
template<class K, class V>
struct RBTreeNode
{
// 这⾥更新控制平衡也要加⼊parent指针
pair<K, V> _kv;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
Colour _col;
RBTreeNode(const pair<K, V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
{}
};
template<class K, class V>
class RBTree
{
typedef RBTreeNode<K, V> Node;
public:
private:
Node* _root = nullptr;
};
2.2 红⿊树的插⼊
2.2.1 红⿊树树插⼊⼀个值的⼤概过程
-
插⼊⼀个值按⼆叉搜索树规则进⾏插⼊,插⼊后我们只需要观察是否符合红⿊树的4条规则。
-
如果是空树插⼊,新增结点是⿊⾊结点。如果是⾮空树插⼊,新增结点必须红⾊结点,因为⾮空树插⼊,新增⿊⾊结点就破坏了规则4,规则4是很难维护的。
-
⾮空树插⼊后,新增结点必须红⾊结点,如果⽗亲结点是⿊⾊的,则没有违反任何规则,插⼊结束
-
⾮空树插⼊后,新增结点必须红⾊结点,如果⽗亲结点是红⾊的,则违反规则3。进⼀步分析,c是红⾊,p为红,g必为⿊,这三个颜⾊都固定了,关键的变化看u的情况,需要根据u分为以下⼏种情况分别处理。
说明:下图中假设我们把新增结点标识为c (cur),c的⽗亲标识为p(parent),p的⽗亲标识为g(grandfather),p的兄弟标识为u(uncle)。
情况一:cur为红,p为红,g为黑,u存在且为红
关键看u结点,根结点的颜色为黑色,不能有连续的红色结点,所以上面的情况已经出现连续的红色结点了,此时我们需要进行调整:
c为红,p为红,g为⿊,u存在且为红,则将p和u变⿊,g变红。在把g当做新的c,继续往上更新。
分析:因为p和u都是红⾊,g是⿊⾊,把p和u变⿊,左边⼦树路径各增加⼀个⿊⾊结点,g再变红,相当于保持g所在⼦树的⿊⾊结点的数量不变,同时解决了c和p连续红⾊结点的问题,需要继续往上更新是因为,g是红⾊,如果g的⽗亲还是红⾊,那么就还需要继续处理;如果g的⽗亲是⿊⾊,则处理结束了;如果g就是整棵树的根,再把g变回⿊⾊。
while (parent && parent->_col == RED)
{
Node* grandfater = parent->_parent;
if (parent == grandfater->_left)
{
Node* uncle = grandfater->_right;
//情况一:u存在且为红
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfater->_col = RED;
cur = grandfater;
parent = cur->_parent;
}
else//其他情况
{
}
}
else//parent==grandfater->_right
{
Node* uncle = grandfater->_left;
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfater->_col = RED;
cur = grandfater;
parent = cur->_parent;
}
else
{
}
}
}
_root->_col = BLACK;
情况二:c为红,p为红,g为⿊,u不存在或者u存在且为⿊,gpc在同一侧
此时u的情况:
•u不存在,则c⼀定是新增结点;
•u存在且为⿊,则c⼀定不是新增,c之前是⿊⾊的,是在c的⼦树中插⼊,符合情况1,变⾊将c从⿊⾊变成红⾊,更新上
来的。
分析:p必须变⿊,才能解决,连续红⾊结点的问题,u不存在或者是⿊⾊的,这⾥单纯的变⾊⽆法解决问题,需要旋转+变⾊。
如果p是g的左,c是p的左,那么以g为旋转点进⾏右单旋,再把p变⿊,g变红即可。p变成课这颗树新的根,这样⼦树⿊⾊结点的数量不变,没有连续的红⾊结点了,且不需要往上更新,因为p的⽗亲是⿊⾊还是红⾊或者空都不违反规则。
如果p是g的右,c是p的右,那么以g为旋转点进⾏左单旋,再把p变⿊,g变红即可。p变成课这颗树新的根,这样⼦树⿊⾊结点的数量不变,没有连续的红⾊结点了,且不需要往上更新,因为p的⽗亲是⿊⾊还是红⾊或者空都不违反规则。
情况三: cur为红,p为红,g为黑,u不存在/u为黑,gpc不在同一侧:
c为红,p为红,g为⿊,u不存在或者u存在且为⿊,u不存在,则c⼀定是新增结点,u存在且为⿊,则c⼀定不是新增,c之前是⿊⾊的,是在c的⼦树中插⼊,符合情况1,变⾊将c从⿊⾊变成红⾊,更新上来的。
分析:p必须变⿊,才能解决,连续红⾊结点的问题,u不存在或者是⿊⾊的,这⾥单纯的变⾊⽆法解决问题,需要旋转+变⾊。
如果p是g的左,c是p的右,那么先以p为旋转点进⾏左单旋,再以g为旋转点进⾏右单旋,再把c变⿊,g变红即可。c变成课这颗树新的根,这样⼦树⿊⾊结点的数量不变,没有连续的红⾊结点了,且不需要往上更新,因为c的⽗亲是⿊⾊还是红⾊或者空都不违反规则。
如果p是g的右,c是p的左,那么先以p为旋转点进⾏右单旋,再以g为旋转点进⾏左单旋,再把c变⿊,g变红即可。c变成课这颗树新的根,这样⼦树⿊⾊结点的数量不变,没有连续的红⾊结点了,且不需要往上更新,因为c的⽗亲是⿊⾊还是红⾊或者空都不违反规则。
2.3 红⿊树的插⼊代码实现
// 旋转代码的实现跟AVL树是⼀样的,只是不需要更新平衡因⼦
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(kv);
cur->_col = RED;
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
// 链接父亲
cur->_parent = parent;
// 父亲是红色,出现连续的红色节点,需要处理
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
// g
// p u
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
// 变色
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else
{
if (cur == parent->_left)
{
// g
// p u
// c
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p u
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
// g
// u p
Node* uncle = grandfather->_left;
// 叔叔存在且为红,-》变色即可
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔不存在,或者存在且为黑
{
// 情况二:叔叔不存在或者存在且为黑
// 旋转+变色
// g
// u p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
本篇结束…