文件名称:基于构造型神经网络的分类算法 (2009年)
文件大小:264KB
文件格式:PDF
更新时间:2024-06-18 13:28:42
自然科学 论文
提出一种基于构造型神经网络的最大密度覆盖分类算法,以便更加有效地解决模式识别的问题。首先,引入一个密度估计函数,用该函数对样本数据进行聚类分析,找出同类样本中具有最大密度的样本数据点,然后,在特征空间里作超平面与球面相交,得到1个球面覆盖领域,从而将神经网络训练问题转化为点集覆盖问题。该算法的特点是直接对样本数据进行处理,有效地克服了传统神经网络训练时间长、学习复杂的问题,同时也考虑了神经网络规模的优化问题。计算机仿真实验结果证实了该算法的有效性。