文件名称:基于信息熵的支持向量数据描述分类 (2011年)
文件大小:699KB
文件格式:PDF
更新时间:2024-06-02 03:38:46
工程技术 论文
针对现有的支持向量数据描述(SVDD)在解决分类问题时通常存在盲目性和有偏性,在研究信息熵和SVDD分类理论的基础上,提出了改进两类分类问题的E-SVDD算法。首先对两类样本数据分别求出其熵值;然后根据熵值大小决定将哪类放在球内;最后结合两类样本容量以及各自的熵值所提供的分布信息,对SVDD算法中的C值重新进行定义。采用该算法对人工样本集和UCI数据集进行实验,实验结果验证了算法的可行性和有效性。