折衷型模糊决策的基本步骤-ansysworkbench 工程实例详解

时间:2024-07-01 15:44:26
【文件属性】:

文件名称:折衷型模糊决策的基本步骤-ansysworkbench 工程实例详解

文件大小:4.07MB

文件格式:PDF

更新时间:2024-07-01 15:44:26

数学建模

3.4 模糊多属性决策方法 3.4.1 模糊多属性决策理论的描述 模糊多属性决策理论是在经典多属性决策理论基础上发展起来的,它可以描述为: 给定一个方案集 },,,{ 21 mAAAA L= 和相应的每个方案的属性集(也称指标集) =C ),,,( 21 nCCC L ,并给定每种属性相对重要程度的权重集合 ),,,( 21 nwwww L= 。 把已知的属性指标、权重大小和数据结构都相应的表示成决策空间中的模糊子集或模糊 数,得到模糊指标值矩阵,记为 nmijfF ×= )( 。然后采用广义模糊合成算子对模糊权重 向量w 和模糊指标值矩阵 F 实施变换,得到模糊决策矩阵 D : FwD Θ= , 对于 D 中 的元素采用模糊折衷型决策方法对其进行排序, 以此来选出 iA ( mi ,,2,1 L= )中的 优方案。 3.4.2 折衷型模糊多属性决策方法 (1)折衷型模糊决策的基本原理 折衷型模糊决策的基本原理是:从原始的样本数据出发,先虚拟模糊正理想和模糊 负理想,其中模糊正理想是由每一个指标中模糊指标值的极大值构成;模糊负理想是由 每一个指标中模糊指标值的极小值构成。然后采用加权欧氏距离的测度工具来计算各备 选对象与模糊正理想和模糊负理想之间的距离。在此基础上,再计算各备选对象属于模 糊正理想的隶属度,其方案优选的原则是,隶属度越大,该方案越理想。 (2)折衷型模糊决策的基本步骤 Step1:指标数据的三角形模糊数表达


网友评论