deeppipe2:使用GPU(CUDAcuBLAS)的深度学习库

时间:2024-02-25 21:58:34
【文件属性】:

文件名称:deeppipe2:使用GPU(CUDAcuBLAS)的深度学习库

文件大小:214.19MB

文件格式:ZIP

更新时间:2024-02-25 21:58:34

elixir deep-learning gpu cuda cublas

deeppipe2:使用GPU(CUDAcuBLAS)的深度学习库


【文件预览】:
deeppipe2-master
----mix.exs(1KB)
----mnist()
--------t10k-images-idx3-ubyte.gz(1.57MB)
--------t10k-labels-idx1-ubyte(10KB)
--------t10k-labels-idx1-ubyte.gz(4KB)
--------train-labels-idx1-ubyte.gz(28KB)
--------train-images-idx3-ubyte(44.86MB)
--------train-images-idx3-ubyte.gz(9.45MB)
--------t10k-images-idx3-ubyte(7.48MB)
--------train-labels-idx1-ubyte(59KB)
----priv()
--------nifs.so(844KB)
----.formatter.exs(97B)
----test()
--------deeppipe_test.exs(81B)
--------test_helper.exs(15B)
--------cumatrix_test.exs(21KB)
----mix.lock(4KB)
----temp.ex(2.48MB)
----makefile(305B)
----lisence.txt(1KB)
----.gitignore(581B)
----lib()
--------deeppipe.ex(41KB)
--------mnist.ex(10KB)
--------cumatrix.ex(37KB)
--------fashion.ex(5KB)
--------iris.ex(1KB)
--------cifar.ex(6KB)
--------check.ex(3KB)
--------nifs.cu(102KB)
--------nlp.ex(4KB)
--------macro.ex(14KB)
----README.md(4KB)
----iris()
--------iris.data(4KB)
----fashion()
--------t10k-labels-idx1-ubyte(10KB)
--------train-images-idx3-ubyte(44.86MB)
--------t10k-images-idx3-ubyte(7.48MB)
--------train-labels-idx1-ubyte(59KB)
----cifar-10-batches-bin()
--------test_batch.bin(29.31MB)
--------data_batch_2.bin(29.31MB)
--------data_batch_3.bin(29.31MB)
--------data_batch_1.bin(29.31MB)
--------data_batch_5.bin(29.31MB)
--------batches.meta.txt(61B)
--------readme.html(88B)
--------data_batch_4.bin(29.31MB)
----rnn()
--------train.exs(201B)
--------train-label.exs(24B)

网友评论