文件名称:基于样本正态性重采样的改进KISSME行人再识别算法
文件大小:1.39MB
文件格式:PDF
更新时间:2024-05-20 08:15:52
行人再识别 度量学习算法 半监督学习
跨场景行人再识别方法的关键在于特征识别和度量模型的建立,而这两方面的问题都受到图像样本分布的局限,进而使得模型参数的估计出现过拟合现象。针对以上跨场景的行人再识别问题,提出了一种基于半监督的改进KISSME算法。该算法在KISSME学习算法的基础上,根据样本数据的正态分布特性进行重采样,并通过构建循环优化的学习方式弱化模型的拟合强度,增强度量模型的泛化能力,以此建立泛化后的度量模型。再通过联合KISSME度量,构建改进的半监督度量模型。最后,利用行人再识别通用公开数据集VIPeR对改进算法的有效性进行验证,并与SLDDL、RDC、ITML、PCCA、QARR-RSVM和KISSME等算法精度相比较,实验结果表明基于半监督的改进KISSME算法在不同排名下都有明显的优势,尤其在rank-1识别精度上,相较于现有的KISSME算法提升了3.14%,充分验证了该算法的有效性。