文件名称:改进PSO-SVM在说话人识别中的应用 (2007年)
文件大小:293KB
文件格式:PDF
更新时间:2024-06-13 20:59:52
自然科学 论文
为了加快粒子群优化算法的收敛速度,增强全局的搜索能力,通过对粒子群优化算法中惯性权重和全局最优值的分析,提出了一种根据迭代次数而自适应变化的惯性权重的粒子群优化方法。改进后的粒子群算法在防止陷入局部最优的能力方面有了明显的增强,同时,给出了应用粒子群优化算法训练支持向量机的方法,并将其应用于说话人识别。实验结果证实了在说话人识别中改进PSO-SVM方法比其他传统方法能获得更好的识别精度和识别速度。