文件名称:土壤含盐量BP神经网络反演模型1) (2009年)
文件大小:278KB
文件格式:PDF
更新时间:2024-06-09 01:00:15
自然科学 论文
运用Hyperion数据,以黑龙江省大庆市某一实验区为例,通过对图像预处理、特征提取、土壤含盐量、波段与土壤含盐量的相关性分析,建立BP神经网络模型(Back Propagation Network)、经验统计模型等进行研究,并开展了对土壤含盐量的定量提取研究,探讨Hyperion数据反演土壤含盐量的方法。结果表明:与传统的经验统计模型相比,BP神经网络模型具有不可比拟的优越性;同时,Hyperion数据为建立土壤含盐量模型提供了高维的输入样本,大大提高了反演的精度;土壤含盐量的反演模型的研究还有待于进一