文件名称:一种基于支持向量机的非线性系统辨识方法 (2010年)
文件大小:262KB
文件格式:PDF
更新时间:2024-06-11 18:38:26
自然科学 论文
提出一种新的非线性系统辨识方法,基于支持向量机回归算法,选取高斯核函数构造了从输入空间到高维特征空间的非线性映射,以避免繁琐的运算,实现对非线性系统的辨识。仿真结果表明了SVM具有很好的拟合和泛化能力,同基于神经网络的非线性系统辨识相比,其辨识和泛化性能要优于神经网络。支持向量机的使用为工业过程的系统辨识提供了一条新的途径。