文件名称:基于卷积特征建模的目标检测方法
文件大小:1.25MB
文件格式:PDF
更新时间:2024-05-20 09:18:04
目标检测 特征相关性 多分支融合
现有依赖CNN的目标检测算法常采用特征融合的建模方式来丰富特征表达,虽然该方法一定程度上能有效改善多尺度目标检测,但是在针对复杂场景进行检测时却没有显著的提升。这主要受限于三个问题的影响:长路径特征融合造成的特征间相关性损失;仅设计了单方向的融合连接,忽略了反方向的语义信息弥补;忽略了有效感受野(effective receptive field,ERF)在多尺度检测中的重要性。针对这三点分别设计了二次融合结构(double fusion structure,DFS)、多分支融合模块(multi branch fusion module,MBFM)和感受野增强模块(receptive field enhance module,RFEM)。该方法利用DFS缩短特征层级间的相对路径,然后通过MBFM来同时弥补上层和下层的语义信息缺失,并使用RFEM建模特征通道,增大ERF区域。最终模型在PASCAL VOC 2007测试数据集上达到了85.4%的平均精度均值(mean average precision,mAP),与依赖传统建模方式的检测算法相比,提出的方法提高了2.6%。