文件名称:面向硬件加速的通用图像卷积实验平台
文件大小:1.31MB
文件格式:PDF
更新时间:2024-05-26 05:42:23
FPGA 硬件加速 图像卷积 并行度
FPGA因具有较好的并行处理能力和灵活性, 使其在卷积神经网络硬件加速计算中得到广泛的应用, 但是传统的FPGA图像卷积实现中存在模块化设计以及空间开销较大的问题. 本文提出了一种面向硬件加速的通用图像卷积开发平台. 通过模块化设计, 极大提高针对不同卷积核实现图像卷积开发的灵活性; 另外通过图像批次处理技术, 充分利用数据重复性实现内存共享, 较好地降低了存储空间的开销. 实验结果表明, 本文设计的平台在模块化设计方面提供了更好的可重配置架构, 非常适于实验教学应用; 在存储空间需求方面, 当并行度提高时, BRAM的复杂度只是线性增加, 这对于功耗的降低具有优势.