文件名称:论文研究-学习-考试型的粒子群优化算法.pdf
文件大小:664KB
文件格式:PDF
更新时间:2022-09-28 07:17:47
论文研究
标准的粒子群算法在进化后期常易于陷入局部最优。为提高粒子群算法的寻优性能,首先对学生学习-考试机制进行分析,得到学习-考试机制的基本原则,然后,利用该原则和粒子局部最优的信息,在粒子陷入局部最优时,对粒子的位置分量进行有机地组合,即考试策略。数值实验结果证明了新策略极大地提高了粒子的寻优性能。
文件名称:论文研究-学习-考试型的粒子群优化算法.pdf
文件大小:664KB
文件格式:PDF
更新时间:2022-09-28 07:17:47
论文研究
标准的粒子群算法在进化后期常易于陷入局部最优。为提高粒子群算法的寻优性能,首先对学生学习-考试机制进行分析,得到学习-考试机制的基本原则,然后,利用该原则和粒子局部最优的信息,在粒子陷入局部最优时,对粒子的位置分量进行有机地组合,即考试策略。数值实验结果证明了新策略极大地提高了粒子的寻优性能。