文件名称:基于分块存储格式的稀疏线性系统求解优化
文件大小:1.17MB
文件格式:PDF
更新时间:2024-05-20 06:49:02
GPU加速 共轭梯度 稳定双共轭梯度
针对基于GPU求解大规模稀疏线性方程组进行了研究,提出一种稀疏矩阵的分块存储格式HMEC(hybrid multiple ELL and CSR)。通过重排序优化系数矩阵的存储结构,将系数矩阵以一定的比例分块存储,采用ELL与CSR存储格式相结合的方式以适应不同的分块特征,分别使用适用于不对称矩阵的不完全LU分解预处理BiCGStab法和对称正定矩阵的不完全Cholesky分解预处理共轭梯度法求解大规模稀疏线性系统。实验表明,应用HMEC格式存储稀疏矩阵并以调用GPU kernel的方式实现前述两种方法,与其他存储格式的实现方式作比较,最优可分别获得31.89%和17.50%的加速效果。